2017 IACAT Conference Advancing assessment through CAT

18-21 August 2017, Niigata, Japan

Benesse Corporation

Graduate Management Admission Council®

Multistage Testing using Determinantal Point Processes

Jill-Jênn Vie

RIKEN Center for Advanced Intelligence Project

Tokyo, Japan

Context

- Many similarities between machine learning and psychometric models or concepts
 - MIRT ↔ Matrix factorization with a sigmoid link
 - Calibration ↔ Feature extraction
 - Control item exposure ↔ Exploitation-exploration
- Why not bring some ideas from ML to CAT? (also: the other way)

Adaptive Testing

Multistage Testing

Motivation

- In a CAT, we want to ask questions that minimize the uncertainty over the examinee parameters
- But the first MLE of the examinee parameters is hard to obtain
 - If dim = 1 (Rasch), examinee should at least fail one item and succeed at another item
 - If dim > 1 (MIRT) the MLE is less likely to exist
- Chalmers (2016) suggests doing a pre-CAT
- How to choose the **very first** items?

Talk

- Introduce MIRT
- Visualize the items
- Present a measure of diversity
- Apply it \rightarrow selection of the first items of a MST
- Experiments and results
- Disclaimer: this presentation is not adaptive 😕
 - Sequence of slides will be the same for everyone

Assumptions

- Dichotomous data *D*: right/wrong answers
 - $D_{ij} = 1$: "Examinee *i* answers correctly item *j*"
- MIRT model
 - Examinee i : ability $\theta_i \in \mathbb{R}^d$
 - Item *j* : discrimination $a_j \in \mathbb{R}^d$ and easiness $b_j \in \mathbb{R}$

$$\Pr(D_{ij} = 1) = \frac{1}{1 + e^{-\left(a_j^T \theta_i + b_j\right)}}$$

Ex: Fraction Subtraction data

- 536 middle-school examinees
- 20 fraction subtraction items (DeCarlo, 2010)
- Calibrate 2-dim MIRT model: for each item,
 - a_1 , a_2 discrimination along the 2 dimensions
 - b the easiness
- Population has a prior ~ $\mathcal{N}(0, I)$

Interpreting components

Items that discriminate only over one dimension

Interpreting components

Items that highly discriminate over both dimensions

Is this a good choice of items?

Is this a good choice of items?

Intuition

- Items with close parameters receive similar response patterns (columns)
- In order to maximize response pattern diversity, we should present items of which parameters are least correlated to each other
 - = of which the volume spanned is high

Geometry

- If we have n vectors V_1, \ldots, V_n
- And I is a subset of $\{1, ..., n\}$
- Let V_I denote the matrix of rows $\{V_i | i \in I\}$
- Then the volume spanned by rows of V_I is:

$$Vol(V_I) = (\det V_I V_I^T)^2$$

Application:

 $V_j = (a_{j1}, ..., a_{jd}, b_j)$ parameters of item j

Determinantal Point Processes

- Stochastic process that samples subsets
 - Diverse subsets have higher probability to be drawn
 - A DPP samples a subset *S* such that for all set *I*: $Pr(I \subset S) \propto \det V_I^T V_I = \sqrt{Vol(V_I)}$
- Benefits:
 - k items of n can be drawn with probability $O(k^3n)$
 - (after a diagonalization of $O(n^3)$ computed once)
 - Random process so lower item exposure
- Applied to machine learning problems (Kulesza & Taskar, 2012)

Study

- Compare:
 - CAT with D-optimality criterion
 - Random selection in MST
 - InitialD: DPP selection in MST
- Performance at predicting examinee responses
 - Metric: log-loss (negative log-likelihood)
- On two datasets:
 - Fraction: 536 students, 20 items, 8 skills
 - TIMSS: 757 8th-graders, 23 Maths items, 13 skills

Experiment

- Q-matrix:
 - $q_{jk} = 1$ iff item *j* involves skill *k*
- For each dataset with q-matrix:
 - Train a MIRT model on 80% data + extra constraint:
 - If item *j* does not require skill k ($q_{jk} = 0$) then $a_{jk} = 0$
 - Equivalent to the General Diagnostic Model (Davier, 2005)
 - Get item parameters $V_j = (a_{j1}, ..., a_{jd}, b_j)$ of item j
 - For each user in the remaining 20% data:
 - Sample items according to each criterion
 - Get MAP estimate of examinee parameters
 - Compute error (log-loss) of predictions

Results on Fraction data

Results on TIMSS data

Initial number of questions asked

Conclusion

- Volume is a measure of diversity that can be used for the first stage of MST
 - Determinantal point processes can sample diverse items efficiently
- Further work: can it be useful for later steps?
 - Can it help teachers build their modules?

Thank you!

Jill-Jênn Vie jilljenn.github.io (+ code)

- Kulesza and Taskar (2012). "Determinantal Point Processes for Machine Learning." Foundations and Trends® in Machine Learning 5.2–3: 123-286.
- Vie et al. (2016) "Adaptive Testing with a General Diagnostic Model". In : 11th European Conference on Technology Enhanced Learning (EC-TEL 2016). Springer, 331–339.
- Chalmers (2016). "Generating adaptive and non-adaptive test interfaces for multidimensional item response theory applications." *Journal of Statistical Software* 71.5: 1-38.