Adaptive Testing using a General Diagnostic Model

Jill¹-Jênn² Vie³ Fabrice Popineau⁴ Yolaine Bourda⁴ Éric Bruillard²

¹ RIKEN Center for Advanced Intelligence Project
² ENS Paris-Saclay
³ Université Paris-Saclay
⁴ CentraleSupélec, Gif-sur-Yvette

Context

How to predict the performance of examinees while asking as few questions as possible to them?

(AKA: I have a bunch of log files, can I use them to improve my online course?)

Outline

- ► Context & Adaptive Tests
- ▶ Item Response Theory & Cognitive Diagnosis
- Metrics for experiments
- Extensions

Context

We consider dichotomous data of learners over questions or tasks.

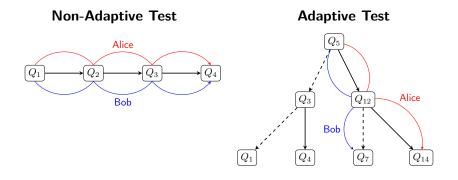
	Questions							
	1	2	3	4	5	6	7	8
Alice	0	1	1	1	0	0	0	1
Bob	1	0	1	1	0	0	0	1
Charles	1	0	1	0	0	0	0	0
Daisy	1	0	0	1	1	1	1	1
Everett	1	0	0	0	1	0	0	1
Filipe	0	1	0	1	1	1	1	1
Gwen	0	0	0	1	0	0	1	1
Henry	0	0	0	0	1	0	0	1
lan	1	1	1	1	0	1	1	0
Jill	0	1	1	1	0	0	1	0
Ken	1	1	1	0	1	1	0	1

- ► Tests are too long, examinees are overtested
- lacktriangle Asking all questions to every examinee ightarrow boredom

How to personalize this process?

While the test runs

Pick the "best" next question to ask according to past



Two main families in psychometrics

Do you care about explanative models or not?

Item response theory

- Answers can be explained by continuous hidden variables
- What parameters can we measure to predict performance?
- ▶ Infer them directly from student data
- Good for the examiner

Cognitive diagnosis

- Answers can be explained by the mastery or non-mastery of some knowledge components (KC)
- Expert (examiner) maps items to KCs
- ▶ Infer the KCs mastered ⇒ predict performance
- Good for the examinee: they receive feedback

A first simple, yet reliable model: Rasch model

- ▶ $R_{ij} \in \{0,1\}$ outcome of examinee i over item j (right/wrong)
- \triangleright θ_i ability of examinee i
- ▶ d_j difficulty of item j
- ▶ $\Phi: x \mapsto 1/(1 + exp(-x))$

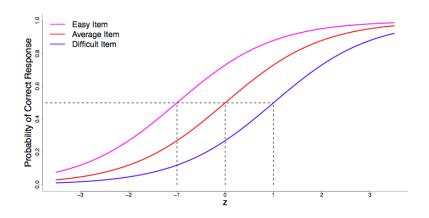
$$Pr(R_{ij}=1)=\Phi(\theta_i-d_j).$$

Algorithm

- ▶ Learn d_j (and θ_i) for historic data (maximizing log-likelihood)
- When a new examinee arrives: initialize $\theta^{(0)} = 0$
- For each time $t = 0, \ldots, T 1$:
 - Ask question of difficulty d_j closest to student ability $\theta^{(t)}$ (proba closest to 1/2)
 - ightharpoonup Refine student ability $\theta^{(t+1)}$ (maximum likelihood estimate)

Response model

$$f_{d_i}: \theta_i \mapsto Pr(R_{ij}=1) = \Phi(\theta_i - d_j).$$



Example!

Rasch model for 20 questions

	Q1	Q2	Q3	 Q19	Q20
Difficulty	-0.45	-0.40	-0.35	 0.45	0.50

Question 10 is asked. Incorrect. Question 2 is asked. Correct! Question 9 is asked. Correct! Question 14 is asked. Correct!

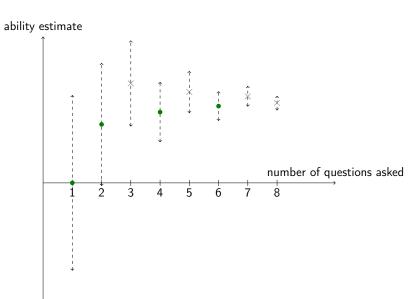
- \Rightarrow Ability estimate = -0.401
- \Rightarrow Ability estimate = -0.066
 - \Rightarrow Ability estimate = 0.224
 - \Rightarrow Ability estimate = 0.478

Feedback

Your ability estimate is 0.478.

(proba 0.7 to solve Q1, proba 0.5 to solve Q19)

Refine ability estimate over time



A cognitive diagnostic model: DINA model

- K possible skills
- $S = \{0,1\}^K$ potential latent states (subsets of mastered skills)
- ▶ Each question requires $x_i \in S$ skills.
- \blacktriangleright π : distribution of a new examinee over latent states

$$Pr(R_{ij} = 1) = \begin{cases} 1 - s_j & \text{if student } i \text{ masters all skills required } x_j \\ g_j & \text{otherwise.} \end{cases}$$

Algorithm

- ▶ Nothing to learn from historic data
- ▶ When a new examinee arrives: initialize $\pi^{(0)}$ to *Uniform(S)*
- ▶ For each time t = 0, ..., T 1:
 - Ask question that minimizes the expected entropy over $\pi^{(t+1)}$ according to the answer (using Bayes' rule)
 - Refine $\pi^{(t+1)}$ accordingly

Example of DINA-based test

Q-matrix: map between items and KCs

		Knowledge components				
		form	mail	сору	url	
T1	Sending a mail	form	mail			
T2	Filling a form	form				
T3	Sharing a link			сору	url	
T4	Entering a URL	form			url	

Task 1 is assigned. Correct!

 \Rightarrow **form** and **mail** may be mastered. No need to assign Task 2.

Task 4 is asked. Incorrect.

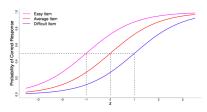
 \Rightarrow **url** may not be mastered. No need to use Task 3.

Feedback and inference

You master form and mail but not url.

Comparison between IRT and CD

Rasch model



- Difficulty of questions
- Ability of learners
- Learners can be ranked
- No need of domain knowledge

Cognitive diagnosis

_	∽გ		~~6	
		C_1	C_2	C_3
($\overline{Q_1}$	1	0	0
(Q_1 Q_2	0	1	1
(Q_3	1	1	0
	:	:	:	:

- KCs required for each question
- Mastery or non-mastery of every KC for each learner
- ► Learners get feedback
- No need of prior data

GenMA: combining MIRT and a q-matrix

Rasch model

- Perf. depends on difference between learner ability and question difficulty
- ► Same as Elo ratings

Multidimensional Item Response Theory

- Depends on correlation between ability and question parameters
- Hard to converge

GenMA

- Depends on correlation between ability and question parameters, but only for non-zero q-matrix entries
- Easy to converge

$$\Phi(\theta_i - d_i)$$

$$\Phi(\theta_i^T d_j) = \Phi\left(\sum_{k=1}^d \theta_{ik} d_{jk}\right)$$

 $(\theta_{ik})_k$: ability of learner i $(d_{jk})_k$: difficulty of question j

$$\Phi\left(\sum_{k=1}^d \theta_{ik} \mathbf{q}_{jk} d_{jk} + \delta_j\right)$$

 $(q_{jk})_k$: q-matrix entry δ_i : bias of question j

Recap

MIRT

- Depends on the correlation between ability and question parameters
- Hard to converge

GenMA

► Depends on the correlation between ability and question parameters, but only for non-zero q-matrix entries

Experimental protocol

	Questions								
		1	2	3	4	5	6	7	8
	Alice	0	1	1	1	0	0	0	1
	Bob	1	0	1	1	0	0	0	1
	Charles	1	0	1	0	0	0	0	0
Train	Daisy	1	0	0	1	1	1	1	1
	Everett	1	0	0	0	1	0	0	1
	Filipe	0	1	0	1	1	1	1	1
	Gwen	0	0	0	1	0	0	1	1
Test	Henry	0	0	0	0	1	0	0	1
	lan	1	1	1	1	0	1	1	0
	Jill	0	1	1	1	0	0	1	0
	Ken	1	1	1	0	1	1	0	1

- ▶ Train student set 80% → extract features
- ▶ Test student set 20% → simulate adaptive test
- \blacktriangleright Validation question set 25% \rightarrow evaluate predictions

Framework for comparing adaptive testing models

```
procedure SIMULATEADAPTIVETEST (model M, I_{train}, I_{test})
     \alpha, \kappa \leftarrow \text{TrainIngStep}(M, D[I_{train}])
     for every examinee s of I_{test} do
         \pi_0 \leftarrow \text{PRIORINITIALIZATION}(\alpha)
         for t = 0, \ldots, |Q \setminus Q_{val}| - 1 do
              q_{t+1} \leftarrow \text{NEXTITEM}(\{(q_k, r_k)\}_{k=1,...,t}, \kappa, \pi_t)
              Ask question q_{t+1} to examinee s
              Receive outcome r_{t+1} \in \{0, 1\}
              \pi_{t+1} \leftarrow \text{UPDATEPARAMS}(\{(q_k, r_k)\}_{k=1,\dots,t+1}, \kappa)
              p \leftarrow \text{PREDICTPERFORMANCE}(\kappa, \pi_t, Q_{val})
              \sigma_{t+1} \leftarrow \text{EVALUATEPERFORMANCE}(p, D[s][Q_{val}])
```

Performance evaluation

3 correct predictions over 5
$$\rightarrow$$
 $\stackrel{.6}{\rightarrow}$ $\stackrel{.4}{\rightarrow}$ $\stackrel{.8}{\rightarrow}$ $\stackrel{.4}{\rightarrow}$ $\stackrel{.4}{\rightarrow}$ $\stackrel{.4}{\rightarrow}$ $\stackrel{.4}{\rightarrow}$ $\stackrel{.4}{\rightarrow}$ $\stackrel{.4}{\rightarrow}$

We compute accuracy and log loss:

$$logloss(y^*, y) = \frac{1}{n} \sum_{k=1}^{n} log(1 - |y_k^* - y_k|).$$

GenMA

Feedback

- ▶ The estimated ability $\theta_i = (\theta_{i1}, \dots, \theta_{iK})$
- Proficiency over several KCs

Inference

 Compute the probability of success over the remaining questions

Example

- After 4 questions have been asked
- ▶ Predicted performance: [.62, .12, .42, .13, .12]
- ▶ True performance: [T, F, T, F, F]
- Computed logloss (error) is 0.350.

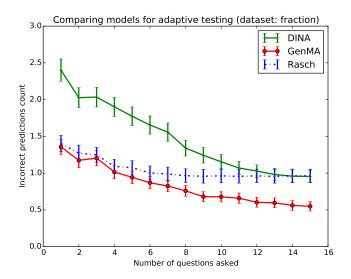
Real dataset: Fraction subtraction (DeCarlo, 2010)

- 536 middle-school students
- 20 questions of fraction subtraction
- ▶ 8 KCs

Description of the KCs

- convert a whole number to a fraction
- simplify before subtracting
- find a common denominator

Results



4 questions over 15 are enough to get a mean accuracy of 4/5.

Summing up

Rasch model

- Really simple, competitive with other models
- But unidimensional, needs prior data, not formative

DINA model

- Formative, can work without prior data
- Needs a q-matrix

GenMA

- Multidimensional
- Formative because dimensions match KCs
- Needs a q-matrix and prior data
- Faster convergence than MIRT

Other models

Performance factor analysis

$$Pr(R_{ij} = 1) = \Phi\left(\theta_i + \sum_k q_{jk}\beta_k + \sum_k q_{jk}\gamma_k N_{ik}\right)$$

- \triangleright θ_i ability of examinee i
- \triangleright β_k bias of all items over KC k
- \triangleright N_{ik} how many times examinee had opportunity to learn KC k
- $ightharpoonup \gamma_k$ bonus bias for each opportunity

Bandit

Ask questions so as to maximize the learning progress of the student: how well he performed recently to how well he performed before.

Further work

Consider graphs of prerequisites over KCs

Implemented in a live certification for the French MoE (L@S 2017 poster)
Code under GPLv3 license pix.beta.gouv.fr

Adapting the process according to a group of answers

Method for multistage testing (ongoing work)

Train higher-dimension MIRT models

- Ongoing work (EDM 2018 submission)
- Managed to train MIRT sparse models up to 15 dimensions

Thank you for your attention!

jilljenn.github.io

Jill-Jênn Vie, Fabrice Popineau, Yolaine Bourda, and Éric Bruillard. "Adaptive Testing Using a General Diagnostic Model". In: European Conference on Technology Enhanced Learning. Springer. 2016, pp. 331–339

Jill-Jênn Vie, Fabrice Popineau, Yolaine Bourda, and Éric Bruillard. "A Review of Recent Advances in Adaptive Assessment". In: Learning analytics: Fundaments, Applications, and Trends. Springer, 2017, pp. 113–142

Jill-Jênn Vie, Fabrice Popineau, Françoise Tort, Benjamin Marteau, and Nathalie Denos. "A Heuristic Method for Large-Scale Cognitive-Diagnostic Computerized Adaptive Testing". In: Proceedings of the Fourth (2017) ACM Conference on Learning @ Scale. ACM. 2017, pp. 323–326

Do you have any questions?

jill-jenn.vie@riken.jp