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1 Introduction
Markov chains are central to the understanding of random processes. They are ap-
plied in a number of ways in many different fields such as communication networks
or performance evaluation, they can even compose music. In the theory of queueing
systems, there is a “coveted item”: the stationary distribution. It can be calculated
for a certain type of queues, for example, those of infinite capacity, but generally
it has to be computed. Unfortunately, most techniques are either imprecise or too
slow when the state space grows.

There comes “Coupling from the Past” (CFTP). This algorithm produces inde-
pendent samples of states according to their stationary distribution. Our main inter-
est is setting bounds on the mean coupling time, which represents the complexity of
the algorithm, and more precisely to prove that the mean coupling time is O(

∑
i Ci)

where Ci denotes the capacity of queue i, for several types of networks.

2 Markovian Queueing Networks
Consider an open queueing network (QN) Q consisting of M queues Q1, . . . , QM.
Each queue Qi (1 6 i 6 M ) has a finite capacity Ci.

Let C be the vector of capacities : C = (C1, . . . , CM). So, the state space SC of
the network is SC = {s ∈ ZM ,∀i, 0 6 si 6 Ci}.

Jobs join the QN from an external Poissonian source with mean arrival rate λ.
The probability that a job joins queue i from outside is p0i. In queue i, each job
requires some processing for an exponentially distributed amount of time with mean
service rate µi. If queue i is not empty, a job is sent to queue j with probability pij ,
and is accepted if queue j is not full, otherwise it is lost. Finally, the probability
that a job leaves the network after service at queue i is pi0, as if it were sent to a
“trash-queue” with capacity zero.
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That QN can be seen as a discrete-event system: all possible events are of the
form aij (i, j ∈ {0, . . . , M}), corresponding to the service of one job in Qi joining
Qj , zero representing the outside world. The event space is denoted by A.

The rate of event aij ∈ A is denoted by γij. Hence, if i, j ̸= 0, then γij = µipij ,
γ0j = λp0j and γi0 = µipi0. The total event rate Γ is finite and Γ =

∑
i,j γij.

Q1

Q2

Q3

γ01

γ12

γ13

γ20

γ30

Figure 1: Queueing network.

Origin Destination Enabling condition Routing policy
a01 Nowhere Q1 None Rejection if Q1 is full
a12 Q1 Q2 s1 > 0 Rejection if Q2 is full
a13 Q1 Q3 s1 > 0 Rejection if Q3 is full
a20 Q2 Nowhere s2 > 0 None
a30 Q3 Nowhere s3 > 0 None

We can now define the stochastic process {s(t) ∈ SC}t>0, which is a continuous-
time Markov chain, where the state of the system s(t) = (s1(t), . . . , sM(t)) repre-
sents the number of customers in each queue at time t. Besides, we consider the
partially ordered set (SC, 4) such that:

(s1, . . . , sM) 4 (s′1, . . . , s
′
M)⇔ ∀i ∈ {1, . . . , M}, si 6 s′i.

2.1 Coupling from the Past
That continuous-time Markov chain can be transformed into (Xn), a discrete-time
Markov chain with the same stationary distribution, by uniformization by Γ. It is
assumed to be irreducible and aperiodic.

The evolution of (Xn) can be written under the form Xn+1 = φ(Xn, un), where
un is a random variable over the event space A that takes value aij with probability
γij/Γ.
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Let ei be the unit vector in direction i of M.
The transition function φ : SC × A → SC is defined as follows:

• If i, j ̸= 0, φ(s, aij) =


s− ei + ej if 0 6 s− ei + ej 6 C
s− ei else, and if s− ei > 0
s else.

• If i = 0, φ(s, a0j) =

{
s + ej if s + ej 6 C
s else.

• If j = 0, φ(s, ai0) =

{
s− ei if s− ei > 0
s else.

For example, in figure 1, for event a12 we get:

φ(�, a12) : (s1, s2, s3) 7→


(s1 − 1, s2 + 1, s3) if s1 > 1 and s2 < C2

(s1 − 1, s2, s3) if s1 > 1 and s2 = C2 (Q2 full)
(s1, s2, s3) if s1 = 0 (Q1 empty).

Let φ(n) : SC × An → SC denote the function which output is the state of the
chain after n iterations starting in state s ∈ SC.

φ(n)(s, u1→n) , φ(. . . φ(φ(s, u1), u2), . . . , un)

This notation can be extended to sets of states:

∀E ⊂ SC, φ(n)(E, u1→n) , {φ(n)(s, u1→n), s ∈ E}.

In the following, |E| denotes the cardinality of set E.
Note that φ is monotone for each event of A:

∀n ∈ N, ∀u1, . . . , un ∈ A, X0 4 X ′
0 ⇒ φ(n)(X0, u1→n) 4 φ(n)(X ′

0, u1→n).

Theorem ([3]).

lim
n→+∞

∣∣φ(n)(SC, u−n+1→0)
∣∣ = 1 almost  surely.

Furthermore, the  value  of φ(n)(SC, u−n+1→0) is  steady-state  distributed.

As SC is partially ordered by 4 and φ(n) is monotone, we only have to simu-
late trajectories from the minimal state 0 and the maximal state C, as illustrated in
figure 2. We hence obtain the algorithm 1.

3 Coupling Time
Almost surely, there exists a finite time τ , the coupling time, defined by:

τ = min{n ∈ N,
∣∣φ(n)(S, e−n+1→0)

∣∣ = 1}.
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Figure 2: Coupling queue. The sequence of events is (a
(2)
10 , a01, a10, a

(4)
01 ) (a(n)

ij means
aij for n times).

Algorithm 1 Perfect simulation algorithm (PSA)
Data: φ, (u−n)n∈N.
Result: s∗ ∈ SC, generated according to the stationary distribution of the system.

n← 1, M ← C,m← 0
repeat

for i = n− 1 downto 0 do
M ← φ(M,u−i)
m← φ(m,u−i)

end for
n← 2n

until M = m
s∗ ←M
return s∗

Proposition ([3]). The average  time  and space  complexity  of  PSA is O(Eτ).

3.1 Case of one queue
Proposition ([1]). The  mean  coupling  time Eτ of  one  queue  with  capacity C , ar-
rival rate λ and service  rate µ is bounded using p = λ

λ+µ
and q = 1− p.

Critical bound ∀p ∈ [0, 1], Eτ 6 C2+C
2

.

Heavy traffic bound if p > 1
2
, Eτ 6 C

p−q
−

q
“

1−( q
p)

C
”

(p−q)2
.

Light traffic bound if p < 1
2
, Eτ 6 C

q−p
−

p
“

1−( p
q )

C
”

(q−p)2
.
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3.2 Ψ2, the Perfect Simulator
Ψ2 is a simulator developed by INRIA that implements PSA.

Q1 Q2 QM−1 QM
2 1

1

. . .
1

1

1
1

1

1
2

Q1 Q2 QM−1 QM1
1

1

. . .
1

1

1
1

1

1

1

1

Figure 3: Queueing networks (acyclic/cyclic) in critical case (as many arrivals than
departures) simulated with Ψ2. Results are in the appendix (A).

With respect to the results given in the appendix (A), we can conjecture that the
mean coupling time is O(

∑
i Ci) (and O(

∑
i C

2
i ) for the critical case), whether the

network is acyclic or not (see also figure 4).
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M = 15, cyclic
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C
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M = 15, cyclic, critical case

Figure 4: Evolution of τ in function of the capacities.

3.3 Acyclic networks
If the network is acyclic, we can number the queues according to the topological
order. Therefore, no event occuring in Qj has any effect on queue Qi if j > i: once
Q1 couples, it will stay coupled until the end of the simulation. We can then consider
Q2, that couples almost surely, etc.

In [1], it is hence proven that Eτ = O(
∑

i C
2
i ).
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3.4 Cyclic networks
It is possible to prove that the mean coupling time of QNs is Θ(

∑
i Ci) for networks

having arbitrary topology.
The main idea consists in simulating two QNs, one of capacities C, the other of

capacities C− ei for a certain i, with the same events.
For example, with M = 2 queues, the trajectories starting from 0 and C − e2

couple in (0, C2− 1) and then reach the bottom line at point s (see figure 5). At that
time, the dashed trajectory starting from C reaches s + e2. Both trajectories then
couple in constant time ([2]).

0

C− e2

C

s

s+ e2
x1

x2

b

b

bb

b

b

Figure 5: Coupling of the trajectories starting from 0 and C − e2 in a queueing
network of arbitrary topology.
Events: (a01, a02, a

(2)
01 , a12, a02, a12, a

(2)
20 , a12, a

(2)
10 , a

(3)
02 , a

(3)
10 , a

(3)
21 , a

(2)
01 , a20, a

(2)
21 ).

Note that the difference between trajectories can change: a queue can be decou-
pled. When it happens, another queue couples.

0 xk

xj

b

s

×
s + ej |

ajk

0 xk

xj

b

s ×
s + ek

Figure 6: Decoupling of Qk, coupling of Qj.
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4 Extension to Negative Customers
In this section, we extend the approach to QNs having “negative customers”: we
add events a−

ij (i, j ∈ {1, . . . , M}) toA corresponding to the service of one job in Qi

that joins Qj , kills a customer then commits suicide (this may happen everyday and
everywhere in daily life, so please be careful when you are waiting in a queue).

4.1 Simulation
Ψ2 handles negative customers.

Q1 Q2 QM−1 QM
4 3

1
1

. . .
1

4

2

1
4

2

1
6

Q1 Q2 QM−1 QM3
3

1
1

. . .
1

4

2

1
4

2

1

5

1

Figure 7: Queueing  networks  (acyclic/cyclic)  with  negative  customers  (in  red,
dashed) simulated with Ψ2. Results are in the appendix (A).
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300
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C

τ

M = 5, acyclic

Figure 8: Evolution of τ in function of the capacities, with negative customers.

Once more, the mean coupling time seems to be O(
∑

i Ci).
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4.2 Non-monotonicity
The resulting system is not monotone. Indeed, for M = 2, (0, 1) 4 (1, 1), but
φ((0, 1), a−

12) = (0, 1) < (0, 0) = φ((1, 1), a−
12).

4.3 Envelopes
Therefore, the only lower bound we can have for E = φ(n)(SC, u−n+1→0) is b =
(b1, . . . , bM) where ∀i, bi = mins∈E si. Similarly, the upper bound is defined by
B = (B1, . . . , BM) where ∀i, Bi = maxs∈E si. These bounds, called envelopes, can
be computed starting with b(1) = 0, B(1) = C, associated to SC, then computing
b(k) and B(k) for k = 2, . . . , n, associated to Ek = φ(k)(SC, u−n+1→−n+k).

Because of these definitions, the evolution of b depends on both b and B, such
as the evolution of B. For instance, with M = 2 queues, if b(k) = (b1, b2), B(k) =
(B1, B2) and the event u−n+k+1 = a−

ij , then if we denote B(k+1) = (B′
1, B

′
2) we have

two possibilities for B′
2: if b1 = 0, then (0, B2) may be in Ek. As φ((0, B2), a

−
ij) =

(0, B2), we have B′
2 = B2. Else, we know for sure that B′

2 = B2 − 1. Thus, we must
define a new transition function φ− : SC × SC ×A → S2

C such that:

∀k ∈ {1, . . . n− 1}, (b(k + 1), B(k + 1)) = φ−(b(k), B(k), u−n+k+1)

(φ(n)
− is defined as previously).

• ∀i, j, φ−(b, B, aij) = (φ(b, aij), φ(B, aij)) (non-trivial but true when i, j ̸= 0)

• ∀i, j ∈ {1, . . . ,M}, φ−(b, B, a−
ij) = (b′, B′)

where b′ =


b− ei − ej if b− ei − ej > 0
b− ei else, and if b− ei > 0 (Qj may be empty)
b− ej else, and if b− ej > 0 and Bi > 0

(Qi is not necessarily empty)
b else (Qi is empty or bi = bj = 0).

and B′ =


B− ei − ej if B− ei − ej > 0 and bi > 0 (Qi is not empty)
B− ei else, and if B− ei > 0

(Qj is empty or Qi may be empty)
B else (Qi is empty).

So, if the trajectories of the envelopes b and B couple, we know the system has
coupled.

4.4 Main result
As in 3.4, we simulate two QNs. One of capacity C which envelopes are (b, B),
another of capacity C− ei for a certain i, associated to (b′, B′).

b = b′ until b and B couple. At this time, b = b′ = B, and ∃j, B′ = b′ + ej.
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Again, some queues can decouple while others couple (at the same time). This
is illustrated by figure 9.

|| |

b b and B (coupled)

bc b′

× B′

xi

xj

bc

×
b

aji

a−
ij a−

ji

xi

xj

bc×b xi

xj

bc ×b xi

xj

bc ×b

Figure 9: Effect of negative customers on trajectories.

The following table lists the events that may occur:

Before • was with Event • will be with After

B′ = b′ + ej
b′j = 0

⃝ a−
ji ×

B′ = b′ + ei
⃝ aji ⃝
× a−

ji ⃝
× a−

ij ×
⃝ or × aji ⃝ and × Qi and Qj are coupled

⃝ and × stay close to •, therefore we can adapt [2] to prove that the mean
coupling time for QN including negative customers is O(

∑
i Ci).

5 Conclusion
We are now able, for any monotone QN, to generate a state according to the station-
ary distribution of the system in linear time in the size of the capacities of all queues
(which is far better than O(

∏
i Ci)), and even with certain non-monotone QNs,

which is surprising because the envelopes seemed to be relatively crude bounds at
first sight.
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A Values returned by Ψ2

The algorithm used to generate these results is not exactly PSA (algorithm 1): in-
stead of doubling τ at each loop, it increments it. Else, we would not be able to get
accurate mean coupling times.

All entries are of the form τc/τa, where τc is the mean coupling time (over 1000
simulations) of the cyclic network, τa the mean coupling time of the acyclic network
associated to it.

In bold, the entries represented in the graphs.

A.1 Positive customers

M \ C 5 10 15 20
5 140/127 277/274 423/421 568/573
10 290/266 572/547 861/836 1145/1133
15 448/412 868/830 1316/1280 1758/1720
20 609/565 1166/1111 1762/1711 2359/2299

A.2 Positive customers with critical case
See also figures 3 and 4.

M \ C 5 10 15 20
5 135/126 460/408 967/822 1624/1331
10 332/320 1135/1098 2433/2381 4288/4137
15 550/540 1908/1863 4170/4021 7274/7007
20 784/768 2795/2682 5971/5905 10396/10068

A.3 Positive and negative customers
See also figures 7 and 8.

M \ C 5 10 15 20
5 129/120 329/300 510/509 688/717
15 599/590 1416/1382 2116/2058 2735/2742
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