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Mangaki.fr

@ User can rate anime or manga (works)
@ And receive recommendations
@ And reorder their watchlist
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The Place Promised in Our

Death Note Dog Days Princesse Mononoké Early Days

e Code is 100% on GitHub
@ Awards from Microsoft and Japan Foundation
o Organized a data challenge with Kyoto University
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RIKEN Center for Advanced Intelligence Project

Director: Masashi Sugiyama (D.Eng.)

@ New Al lab near Tokyo Station (opened in 2016)
@ 8 accepted papers at NIPS 2017
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Authors

Jill-Jénn Vie Florian Yger Ryan Lahfa Hisashi Kashima

@ Florian Yger was visiting RIKEN AIP
@ Kévin Cocchi & Thomas Chalumeau were interns at Mangaki
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Outline

1. Usual algorithms for recommender systems

o Content-based
@ Collaborative filtering

2. Our method

o Extracting tags from posters
@ Blending models

| A

3. Experiments

| A\

o Dataset: Mangaki
@ Results
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Recommender Systems

@ Every user rates few items (1 %)
@ How to infer missing ratings?
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Usual techniques

Content-based (work features: directors, genre, etc.)

@ Linear regression
@ Sparse linear regression (LASSO)

Collaborative filtering (solely based on ratings)

@ K-nearest neighbors

@ Matrix factorization:
e Singular value decomposition
o Alternating least squares
e Stochastic gradient descent

Hybrid recommender systems (combine those two)

@ The proposed method
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Example: K-Nearest Neighbors

Ratings  Paprika Pearl Harbor An Inconvenient Truth

Justin 3 1 3
Angela ? 2 2
Donald -3 2 —4

Emmanuel ? -1 4

Shinzo 4 -1 -3

Donald Angela

Pearl Harbor .
Justin

An Inconvenient Truth

Shinzo Emmanuel
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Example: K-Nearest Neighbors

Ratings  Paprika Pearl Harbor An Inconvenient Truth

Justin 3 1 3

Angela ? 2 2

Donald -3 2 —4
Emmanuel 3,5 -1 4

Shinzo 4 -1 -3
Similarity Justin = Angela Donald Emmanuel Shinzo

Justin 1 0,649  —0,809 0,612 0,090

Angela 0,649 1 —0,263 0,514 —0,555

Donald -0,809 —0,263 1 —0,811 —0,073
Emmanuel 0,612 0,514 —0,811 1 —0,523

Shinzo 0,090 —0,555 —0,073 —0,523 1
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Matrix factorization — reduce dimension to generalize

C: 2k users x 20 profiles

R: 2k users x 15k works <= { P: 20 profiles x 15k works

Reob is a linear combination of profiles Py, P», etc..

Interpreting Key Profiles

If P P1: adventure P,: romance Ps: plot twist
And C, 0,2 —0,5 0,6
= u likes a bit adventure, hates romance, loves plot twists.
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Weighted Alternating Least Squares (Zhou, 2008)

R ratings, U user features, V' work features.

R=UVT = P2V

Objective function to minimize

U,V = i kmown (= Ur- V24X (5 N U2 + 55 M V112)
where:

@ N;: number of ratings by user i

@ M;: number of ratings for item j

Algorithm

Until convergence (~ 10 iterations):
e Fix U find V (just linear regression — least squares)

e Fix V find U
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Visualizing first two components of anime V;
Closer points mean similar taste
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Find your taste by plotting first two columns of U;

You will like anime that are in your direction
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Drawback with collaborative filtering

Issue: Item Cold-Start

@ If no ratings are available for a work j
= Its features V; cannot be trained :-(

No way to distinguish between unrated works.

But we have posters!

@ On Mangaki, almost all works have a poster
@ How to extract information?
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lllustration2Vec (Saito and Matsui, 2015)

@ Prediction results -

*

General Tag Confidence
1girl 86.1%
thighhighs

solo

s 13 8 d B
s 3 M H
2 3 5 8 ©

red hair 73.1%

long hair
breasts 53.7%
gloves

6.
T
8. weapon
9.

elbow gloves 28.3%
10. high heels

11 tattoo 10.9%
# Character Tag

# Copyright Tag

# Rating

1. safe
2. questionable 29.3%
3. explicit

@ CNN (VGG-16) pretrained on ImageNet, trained on Danbooru
(1.5M illustrations with tags)
@ 502 most frequent tags kept, outputs tag weights
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LASSO for sparse linear regression

T matrix of 15000 works x 502 tags (tj: tag k appears in item j)

@ Each user is described by its preferences P;
— a sparse row of weights over tags.
o Estimate user preferences P; such that

~LASSO & T
I’,'j ~ if = P,TJ .

Least Absolute Shrinkage and Selection Operator (LASSO)

1 T2
Pi — 2T/,-”Ri = PiT |5+ ol Pill;.

where N; is the number of items rated by user j.

v

Interpretation and explanation of user preferences

@ You seem to like magical girls but not blonde hair
= Look! All of them are brown hair! Buy now!
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Combine models

Which model should be choose between ALS and LASSQO?
Answer Both!
Methods boosting, bagging, model stacking, blending.

Idea find o s.t. £ £ o PALS 4 (1 — ) PEASSO.
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Examples of «;

@

OéjZRjH].

Number of ratings R;
Mimics ALS

rU 1AAL5 + OALASSO
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Examples of «;

OéjZRj}—)O

Number of ratings R;
Mimics LASSO

rlJ N OAALS + 1ALASSO

We call this gate the Steins;Gate.
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Examples of «;

s
1j ijZR]W—)].{:}RjZ’Y
7 Number of ratings R;
SBALSE _ ?,-j‘LS if item j was rated at least ~ times
v B ?,-JL-ASSO otherwise

But we can't: Not differentiable!
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Examples of «;

aj: Rj— 1/(1+exp(=B(R; —7)))

|
& Number of ratings R;

FEALSE = (B(R; — 1)) + (1= o(3(R; — 7)) 1AS

[ and vy are learned by stochastic gradient descent.

We call this gate the Steins;Gate.
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Blended Alternate Least Squares with Explanation

tags

=i
B

We call this model BALSE.




Experiments
[ Jelelolole}

Dataset: Mangaki
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The Place Promised in Our

Death Note Dog Days Princesse Mononoké Early Days

@ 2300 users
@ 15000 works anime / manga / OST
@ 340000 ratings fav / like / dislike / neutral / willsee / wontsee
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Evaluation: Root Mean Squared Error (RMSE)

If we predict £} for each user-work pair (/, ) to test among n,
while truth is rj;:

RMSE(#,r) = $ ! > (B — ).

n =
)
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Cross-validation

@ 80% of the ratings are used for training
@ 20% of the ratings are kept for testing

Differents sets of items:

@ Whole test set of works
@ 1000 works least rated (1.5%)
@ Cold-start: works not seen in the training set (only the posters)
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Results

RMSE  Test set 1000 least rated (1.5%) Cold-start items

ALS 1.157 1.299 1.493
LASSO  1.446 1.347 1.358
BALSE 1.150 1.247 1.316
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Summing up

We presented BALSE, a model that:

@ uses information in the ratings (collaborative filtering)

@ uses information in the posters using CNNs (content-based)
@ combine them in a nonlinear way

to improve the recommendations, and explain them.

@ Use latent features (not only tags) of the posters (IJCAI 2016)
@ End-to-end training (not separately)
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Thank you!

LA RECOMMANDATION FRANCOPHONE D'ANIME ET MANGA

Try it: https://mangaki.fr Twitter: @MangakiFR

Read the article

Using Posters to Recommend Anime and Mangas in a Cold-Start Scenario
github.com/mangaki/balse (PDF on arXiv, front page of HNews)

V.

Results of Mangaki Data Challenge:

1. Ronnie Wang (Microsoft Suzhou, China)
2. Kento Nozawa (Tsukuba University, Japan)
3. Jo Takano (Kobe University, Japan)
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