
Préparation au concours ACM – TP 3

Christoph Dürr Jill-Jênn Vie

October 2, 2014

Quelques conseils

• Répartissez-vous les problèmes à lire et soulignez les points importants du sujet (con-

traintes, cas particuliers). Est-ce un dynamique ? Un problème de graphes ? Arrivez-vous

à le rapprocher d’un problème connu ?

• Réfléchissez à des tests critiques pour le reste de votre équipe (notamment des edge cases).

• Écrivez d’abord vos algorithmes sur papier.

• Si une soumission échoue, pensez à imprimer le code pour le débugguer à la main afin de

libérer le clavier pour un autre membre de l’équipe.

1





Problem A

– Beehives –
Bees are one of the most industrious insects. Since they collect nectar

and pollen from flowers, they have to rely on the trees in the forest. For
simplicity they numbered the n trees from 0 to n � 1. Instead of roaming
around all over the forest, they use a particular list of paths. A path is based
on two trees, and they can move either way i.e. from one tree to another in
straight line. They don’t use paths that are not in their list.

As technology has been improved a lot, they also changed their working
strategy. Instead of hovering over all the trees in the forest, they are targeting
particular trees, mainly trees with lots of flowers. So, they planned that they
will build some new hives in some targeted trees. After that they will only
collect their foods from these trees. They will also remove some paths from
their list so that they don’t have to go to a tree with no hive in it.

Now, they want to build the hives such that if one of the paths in their
new list go down (some birds or animals disturbs them in that path) it’s still
possible to go from any hive to another using the existing paths.

They don’t want to choose less than two trees and as hive-building re-
quires a lot of work, they need to keep the number of hives as low as possible.
Now you are given the trees with the paths they use, your task is to propose
a new bee hive colony for them.

INPUT
Input starts with an integer T (T  50), denoting the number of test

cases.

Each case starts with a blank line. Next line contains two integers n
(2  n  500) and m (0  m  20000), where n denotes the number of
trees and m denotes the number of paths. Each of the next m lines contains
two integers u v (0  u, v < n, u 6= v) meaning that there is a path between
tree u and v. Assume that there can be at most one path between tree u to
v, and needless to say that a path will not be given more than once in the
input.

OUTPUT
For each case, print the case number and the number of beehives in the

proposed colony or ‘impossible’ if its impossible to find such a colony.

NOTE
Dataset is huge. Use faster I/O methods.

1



Problem A

INPUT EXAMPLE

3

3 3

0 1

1 2

2 0

2 1

0 1

5 6

0 1

1 2

1 3

2 3

0 4

3 4

OUTPUT EXAMPLE

Case 1: 3

Case 2: impossible

Case 3: 3

2



Problem B

– Bits Equalizer –
You are given two non-empty strings S and T of equal lengths. S contains

the characters ‘0’, ‘1’ and ‘?’, whereas T contains ‘0’ and ‘1’ only. Your task

is to convert S into T in minimum number of moves. In each move, you can

1. change a ‘0’ in S to ‘1’

2. change a ‘?’ in S to ‘0’ or ‘1’

3. swap any two characters in S

As an example, suppose S = “01??00” and T = “001010”. We can trans-

form S into T in 3 moves:

• Initially S = “01??00”

• Move 1 – change S[2] to ‘1’. S becomes “011?00”

• Move 2 – change S[3] to ‘0’. S becomes “011000”

• Move 3 – swap S[1] with S[4]. S becomes “001010”

• S is now equal to T

INPUT
The first line of input is an integer C (C  200) that indicates the number

of test cases. Each case consists of two lines. The first line is the string S
consisting of ‘0’, ‘1’ and ‘?’. The second line is the string T consisting of ‘0’

and ‘1’. The lengths of the strings won’t be larger than 100.

OUTPUT
For each case, output the case number first followed by the minimum

number of moves required to convert S into T . If the transition is impossible,

output �1 instead.

INPUT EXAMPLE

3
01??00
001010
01
10
110001
000000

OUTPUT EXAMPLE

Case 1: 3
Case 2: 1
Case 3: -1

1



Problem C

– LCM Pair Sum –
One of your friends desperately needs your help. He is working with a

secret agency and doing some encoding stuffs. As the mission is confidential
he does not tell you much about that, he just want you to help him with a
special property of a number. This property can be expressed as a function
f(n) for a positive integer n. It is defined as:

f(n) =
X

1pqn
lcm(p,q)=n

(p+ q)

In other words, he needs the sum of all possible pairs whose least common
multiple is n. (The least common multiple (LCM) of two numbers p and q
is the lowest positive integer which can be perfectly divided by both p and
q). For example, there are 5 different pairs having their LCM equal to 6
as (1, 6), (2, 6), (2, 3), (3, 6), (6, 6). So f(6) is calculated as f(6) =
(1 + 6) + (2 + 6) + (2 + 3) + (3 + 6) + (6 + 6) = 7 + 8 + 5 + 9 + 12 = 41.

Your friend knows you are good at solving this kind of problems, so he
asked you to lend a hand. He also does not want to disturb you much, so to
assist you he has factorized the number. He thinks it may help you.

INPUT
The first line of input will contain the number of test cases T (T  500).

After that there will be T test cases. Each of the test cases will start with
a positive number C (C  15) denoting the number of prime factors of n.
Then there will be C lines each containing two numbers Pi and ai denoting
the prime factor and its power (Pi is a prime between 2 and 1000) and
(1  ai  50). All the primes for an input case will be distinct.

OUTPUT
For each of the test cases produce one line of output denoting the case

number and f(n) modulo 1000000007. See the output for sample input for
exact formatting.

INPUT EXAMPLE

3
2
2 1
3 1
2
2 2
3 1
1
5 1

OUTPUT EXAMPLE

Case 1: 41
Case 2: 117
Case 3: 16

1



Problem D

– RNA Secondary Structure –

RNA, which stands for Ribonucleic Acid, is one of the major macro-
molecules that are essential for all known forms of life. It is made up of a
long chain of components called nucleotides. Each component is made up of
one of 4 bases and are represented using A, C, G or U. The primary structure
of RNA is a sequence of these characters. The secondary structure of RNA
refers to the base pairing interactions between different components. More
specifically, base A can pair up with base U and base C can pair up with
base G. The stability of the RNA secondary structure depends on the total
number of base pairs that can be formed. The final structure is the one that
contains the maximum number of base pairs.

Let’s represent the primary structure as a string consisting of characters
from the set (ACGU). The rules of secondary structure formation are as
follows:

1. Any base A can form a pair with any base U

2. Any base C can form a pair with any base G

3. Each base can be part of at most one pair.

4. Let’s assume w < x, y < z and w < y. If base at index w forms a
pair with base at index x and base at index y forms a pair with base
at index z, then one of the following two conditions must be true:

y > x
z < x

5. There can be at most K pairs between C and G.

You will be given the primary structure of the RNA of a certain species
and your job is to figure out the total number of base pairings in the final
secondary structure based on the constraints mentioned above.

You will be given the primary structure in a compressed format that
uses Run-length encoding. In this type of data compression, consecutive
characters having the same value is replaced with a single character followed
by its frequency. For example, “AAAACCGAAUUG” will be represented
using “A4C2G1A2U2G1”. That means the primary structure will be given
in the format < c1f1c2f2c3f3 . . . cnfn >, where ci is from the set (ACGU)
and fi is a positive integer.

The species that we are dealing with have the following properties:

1. f1 + f2 + f3 + ...fn  10050

2. f1  5000

1



Problem D

3. fn  5000

4. f2 + f3 + f4 + . . .+ fn� 1  50

INPUT
The first line of input is an integer T (T  200) that indicates the

number of test cases. Each case contains two lines. The first line is the
primary structure given in run-length encoded format. The second line gives
you the value of K (0  K  20), that gives an upper limit on the number
of C �G base pairs that can be in the final secondary structure.

OUTPUT
For each case, output the case number followed by the maximum number

of base pairs that can be formed. Look at the samples for exact format.

INPUT EXAMPLE

3
A3C1G1C1U4A2U1
1
A3C1G1C1U4A2U1
0
A100U200
2

OUTPUT EXAMPLE

Case 1: 6
Case 2: 5
Case 3: 100

ILLUSTRATION
One possible final secondary structure for case 1 is depicted below that

shows the 6 base pairings.

2



A B C D (A,B) (B,C) (C,D) (D,A)

P Q R S

T (A,B,C,D) = (P,Q,R, S)
(A,B,C,D) = (R,S, P,Q)

N

T

T <= 50



N N <= 700
N (x, y)

106



C

Y X

P P

py px

W W

wy wx



1  C  50
1  Y,X  100
0  P  Y ⇥X

0  W  Y ⇥X

0  P +W  Y ⇥X

1  px,wx  X

1  py, wy  Y



P

m m � 1
m � 2

m

D P S0 S1 S2

D (2 < D 
10000) P (1 < P  1000)

S0 S1

S2

D + 1

D + 1





C 0 < C  230

N 0 < N  500 P 0 < P  50000
N N ai ti

i 1  i  N
P

R
sj qj 1  j  R sj j qj

j





Problem I

– The Moon of Valencia –

It is well known that the Moon of Valencia is magical. Everyone talks about a mystery that
happens at night. People remember what time they entered the first bar, what time arrived to
the hotel and how happy they arrived, but nobody remembers the bars and pubs they visited.

The Valencia hotels have hired you for developing an application that helps customers to
remember. The application will inform customers with one of all the possible sequences of bars
and pubs. Customers have to provide the following information: departure time and place,
arrival time and place, and degree of satisfaction on arrival.

The application uses a map with the location of each bar or pub. Each bar or pub produces
a different degree of satisfaction when visited. But people gets angry when walks from one
place to another, that’s the reason why walking between different places reduces the degree of
satisfaction. The reduction considered depends on the amount of minutes people needs to get
one place from another one. If the amount of minutes is not an integer the remaining seconds
should be considered a portion of a minute, i.e., 30 seconds imply 0.5 minutes. People walk at
a speed of 4 km/h, can stay in a bar or pub the time they like, but for getting the satisfaction
must remain at least 15 minutes. People can decide not to visit a bar or pub, i.e., they can use
a path from the origin to the target and to enter in a subset of all the bars or pubs reachable
with the path. Entering to the departure place is optional, like entering others places. The goal
grade of satisfaction is computed up to the door of the target place, without entering it. So the
grade of satisfaction of the target place (bar, pub or hotel) should not be computed.

INPUT
Input consists of several test cases. Each case begins with the map description, which is

followed by the list of arrivals your application have to check. The description of a map begins
with the word MAP in capital letters followed by two integer numbers, P and M , where P is
the number of places and M is the number of paths connecting two places. (1  P  64).
Places and paths are described one per line. Each place is described with two coordinates (real
numbers represent kilometers), its grade of satisfaction (a real number), the ID and the name.
The paths connecting two places are identified by the their identifiers. Each pair of places can
only be connected by one path.

Figure 1 shows the map corresponding to the first map in the example input case. It is
guaranteed that no crossing paths exist.

The list of arrivals to be processed begins after a line with the word ARRIVALS in uppercase.
Each arrival is described in a single line, including departure time, departure place, arrival time,
arrival place and the grade of satisfaction on arrival, a real number.

OUTPUT
The output for each case must begin with the word MAP in capital letters followed by a

number indicating the number of test case. The first test case is MAP 1, second is MAP 2, and
so on. For each arrival proposed in the input it must appear a line in the output specifying
a valid path found or the string Impossible! indicating that it is not possible to find a path
from origin to target with the required grade of satisfaction. A path found will be valid if the
absolute difference between the required grade of satisfaction and the obtained one is less than
0.1, and contains no loops, i.e. a place can’t appear in the path found more than once.

1



Problem I

���
���

���
���

���
	�	

��

�����

���
��
����

��

��
�
�	

���
��	���	

���
����


��	
��	�
�	

��


�	�


���

�	���	

���
������


���
��	�
�	

���
����	

���
��	�
�	

���
�����

���
��
���	

��	
��	��

��

����	

Figure 1: Representation of the first map in the input example.

2



Problem I
Each path found must begin with the string PATH FOUND: in capital letters, followed by the

obtained grade of satisfaction with three decimal digits and then the sequence of places from
origin up to target. The ID of the unvisited places must appear preceded by the ! sign. Notice
as the ID of the target place never is preceded by this sign.

Hint: set up your solution for running as fast as possible by using this example, it should be
enough for all test cases.

INPUT EXAMPLE
MAP 19 40

0 0 0 UPV Universitat Politecnica de Valencia
5 5 0 SPV Contest hotel
0 1 35 B01 The Object
1.1 1 42 B02 Opera
0.6 1.7 33 B03 New York
1.3 2 55 B04 Blue Note
1.5 2.5 23 B05 The Popes
2.5 2 13 B06 Petrol
4 3.5 12 B07 King of Kings
1.1 4 14 B08 O Salati
1.2 4.5 13 B09 The Snails
2.5 3.5 34 B10 The Earth
1.5 1.5 55 B11 Cafe Coffee
3 4.5 31 B12 Vermouth house
4.5 2.5 45 B13 Jamon Session
1.3 3.6 24 B14 Let’s go to eat
1.5 4 34 B15 I’m hungry
0.6 2.5 53 B16 The Gecko
3.5 2.5 43 B17 The Black Sheep

UPV B01
B01 B02
B01 B03
B01 B16
B02 B03
B02 B11
B16 B08
B16 B14
B16 B03
B03 B04
B03 B11
B04 B11
B04 B16
B04 B05
B05 B14
B08 B09
B08 B15
B08 B14
B11 B06
B14 B15
B05 B06
B05 B16
B05 B10
B15 B09
B15 B10
B09 B12
B06 B10
B06 B17
B10 B07
B10 B17
B10 B12
B10 B14
B12 B15
B12 B07
B12 SPV
B17 B07
B17 B13
B07 B13
B07 SPV

3



Problem I
B13 SPV
ARRIVALS
23:00 UPV 03:00 SPV 9.0
23:00 UPV 03:00 SPV 8.0
23:00 UPV 03:00 SPV 7.0
23:00 UPV 03:00 SPV 6.0
23:00 UPV 03:00 SPV 5.0
23:00 UPV 03:00 SPV 4.0
23:00 UPV 03:00 SPV 3.0
23:00 UPV 03:00 SPV 2.0
23:00 UPV 03:00 SPV 1.0
23:00 UPV 03:00 SPV 0.0
23:00 UPV 03:00 SPV -1.0
23:00 UPV 03:00 SPV -2.0
23:00 UPV 03:00 SPV -30.0
23:00 UPV 03:00 SPV -40.0
23:00 B05 03:00 B10 40.0
23:00 B05 03:00 B10 30.0
23:00 B05 03:00 B10 20.0
23:00 B05 03:00 B10 10.0
23:00 B05 03:00 B10 0.0
23:00 B05 03:00 B10 -10.0
23:00 B05 03:00 B10 -20.0
23:00 B05 03:00 B10 -30.0
23:00 B05 03:00 B10 -40.0
MAP 2 1
0 0 0 UPV Universitat Politecnica de Valencia

10 10 0 SPV Hotel Silken Puerta de Valencia
UPV SPV
ARRIVALS
23:00 UPV 1:00 SPV 9.0
23:00 UPV 1:00 SPV 8.0

OUTPUT EXAMPLE

MAP 1
PATH FOUND: 9.002 UPV B01 B16 B04 !B11 B06 !B17 !B13 SPV
PATH FOUND: 7.929 UPV B01 B16 B14 B08 B09 !B12 SPV
PATH FOUND: 6.973 UPV B01 B16 B04 !B11 B06 !B10 !B07 SPV
PATH FOUND: 6.028 UPV B01 B16 B05 B10 !B17 !B07 SPV
PATH FOUND: 4.995 UPV B01 B16 B04 !B05 !B14 !B15 !B10 B07 SPV
PATH FOUND: 4.078 UPV B01 B16 B08 !B15 B12 B07 SPV
PATH FOUND: 3.028 UPV B01 B16 B05 !B10 B12 !B07 SPV
PATH FOUND: 1.929 UPV B01 B16 B14 !B15 B08 B09 !B12 SPV
PATH FOUND: 0.912 UPV B01 B16 B03 !B04 !B05 !B06 B17 !B13 !B07 SPV
PATH FOUND: 0.028 UPV B01 B16 B05 !B10 B17 !B13 !B07 SPV
PATH FOUND: -0.986 UPV B01 B16 B08 !B09 !B15 B12 SPV
PATH FOUND: -1.973 UPV B01 B16 B03 !B04 !B05 B10 !B17 !B07 SPV
PATH FOUND: -29.953 UPV B01 B03 !B16 B05 !B10 !B14 B15 !B12 SPV
PATH FOUND: -39.913 UPV B01 B03 !B16 B08 !B09 !B15 B12 !B07 SPV
PATH FOUND: 40.069 B05 B16 B14 !B08 B09 !B15 B10
PATH FOUND: 30.012 B05 B16 B08 !B15 B10
PATH FOUND: 19.979 !B05 B04 !B03 B02 !B01 B16 !B08 !B09 !B15 B10
PATH FOUND: 10.004 B05 B14 B08 !B15 !B09 B12 B10
PATH FOUND: 0.004 !B05 B14 B08 !B15 B09 B12 B10
PATH FOUND: -9.966 B05 !B14 !B15 B12 B10
PATH FOUND: -20.012 B05 !B06 !B17 B07 B12 B15 !B14 B10
PATH FOUND: -30.012 !B05 B06 !B17 B07 B12 B15 !B14 B10
PATH FOUND: -40.018 !B05 !B04 !B16 B14 !B15 B10
MAP 2
Impossible!
Impossible!

4



•

•
•

•
•
•

•
•
•
•
• ⇥ ⇥

• ⇥ ⇥

T T

C

1  C  50 C

T 1  T  999

• T

• n operand2 operator operand2 = result

•
•




