Préparation au concours ACM — TP 2

Christoph Diirr Jill-Jénn Vie
September 25, 2014

Quelques conseils

Entrainez-vous a identifier les problémes les plus faciles.

Lisez bien les contraintes d’affichage : faut-il un retour de ligne entre deux instances
consécutives ou méme a la fin 7 Y a-t-il des deux-points, ou des points a la fin des
phrases 7

Pensez aux cas extrémes : que se passe-t-il lorsque le graphe est vide ? Lorsqu’il n’y a
aucune instance 7 Lorsque les entiers donnés en entrée sont négatifs 7 Il peut étre utile
qu’'un membre de votre équipe rédige des tests unitaires.

Aussi, pensez aux bornes sur les entiers : faut-il un unsigned long long int (%11d) 7
Evaluez la complexité de votre idée d’algorithme avant de 'implémenter.

Attention & la mémoire : évitez d’utiliser malloc mais plutét des instructions de type
vector<bool> dejaVu(nbNodes), ou n’hésitez pas a faire un tableau de taille suffisam-
ment grande pour accueillir les instances lorsque les contraintes le permettent, quitte a
ce que ce soit une variable globale.

S’il y a plusieurs instances, pensez a réinitialiser toutes les données & chaque nouvelle
lecture, notamment si vous utilisez des variables globales.

Evitez d’utiliser des classes, éventuellement recodez vos propres structures si vous ne
voulez pas utiliser pair<int, int> ou tuple. Un exemple d’implémentation minimale
pour accueillir un graphe pondéré :

struct Node {

int id;

vector<pair<int, int> > neighbours;
s

vector<Node> graph(nb_nodes) ;

Lorsque vous effectuez des comparaisons entre flottants, songez a conserver une tolérance
de le-6.



Problem A The 3n + 1 problem Problem A

UVa 100

Problems in Computer Science are often classified as belonging to a certain class of problems
(e.g., NP, Unsolvable, Recursive). In this problem you will be analyzing a property of an
algorithm whose classification is not known for all possible inputs.

Consider the following algorithm:

1. input n
2. print n
3. while n # 1:

(a) if n is odd, set n :=3n + 1 else n :=n/2
(b) print n

Given the input 22, the following sequence of numbers will be printed 22 11 34 17 52 26 13
4020105168421

It is conjectured that the algorithm above will terminate (when a 1 is printed) for any integral
input value. Despite the simplicity of the algorithm, it is unknown whether this conjecture is
true. It has been verified, however, for all integers n such that 0 < n < 1000000 (and, in fact,
for many more numbers than this.)

Given an input n, it is possible to determine the number of numbers printed (including the
1). For a given n this is called the cycle-length of n. In the example above, the cycle length of
22 is 16.

For any two numbers ¢ and j you are to determine the maximum cycle length over all
numbers between ¢ and j.

The Input

The input will consist of a series of pairs of integers ¢ and j, one pair of integers per line. All
integers will be less than 1,000,000 and greater than 0.

You should process all pairs of integers and for each pair determine the maximum cycle
length over all integers between and including ¢ and j.

You can assume that no operation overflows a 32-bit integer.

The Output

For each pair of input integers ¢ and j you should output ¢, 7, and the maximum cycle length for
integers between and including ¢+ and j. These three numbers should be separated by at least
one space with all three numbers on one line and with one line of output for each line of input.
The integers ¢ and 7 must appear in the output in the same order in which they appeared in
the input and should be followed by the maximum cycle length (on the same line).

Sample Input Sample Output
1 10 1 10 20

100 200 100 200 125

201 210 201 210 89

900 1000 900 1000 174




Problem B Robot Motion Problem B

UVa 10116

A robot has been programmed to follow the instructions in its path. Instructions for the
next direction the robot is to move are laid down in a grid. The possible instructions are

N north (up the page)
S south (down the page)
E east (to the right on the page)

W west (to the left on the page)

) A

N EE gWE § E W E

‘-TﬁT-E-Tf W E=>S S E*E~> N*&T
S NeWeWeW W N W E=E-*N

EWSEN

Gridl Grid2

For example, suppose the robot starts on the north (top) side of Grid 1 and starts south
(down). The path the robot follows is shown. The robot goes through 10 instructions in the
grid before leaving the grid.

Compare what happens in Grid 2: the robot goes through 3 instructions only once, and
then starts a loop through 8 instructions, and never exits.

You are to write a program that determines how long it takes a robot to get out of the grid
or how the robot loops around.

-EU!(C?

The Input

There will be one or more grids for robots to navigate. The data for each is in the following
form. On the first line are three integers separated by blanks: the number of rows in the grid,
the number of columns in the grid, and the number of the column in which the robot enters
from the north. The possible entry columns are numbered starting with one at the left. Then
come the rows of the direction instructions. Each grid will have at least one and at most 10
rows and columns of instructions. The lines of instructions contain only the characters N,S.E
or W with no blanks.
The end of input is indicated by a row containing 0 0 0.

The Output

For each grid in the input there is one line of output. Either the robot follows a certain
number of instructions and exits the grid on any one the four sides or else the robot follows the
instructions on a certain number of locations once, and then the instructions on some number of
locations repeatedly. The sample input below corresponds to the two grids above and illustrates
the two forms of output. The word "step" is always immediately followed by "(s)" whether or
not the number before it is 1.




Problem B Robot Motion Problem B

Sample Input

365
NEESWE
WWWESS
SNWWWW
451
SESWE
EESNW
NWEEN
EWSEN
000

Sample Output

10 step(s) to exit
3 step(s) before a loop of 8 step(s)




Problem C Anagram Problem C

UVa 195

You are to write a program that has to generate all possible words from a given set of letters.

Example: Given the word "abc", your program should - by exploring all different combination
of the three letters - output the words "abc", "acbh", "bac", "bca", "cab" and "cba".

In the word taken from the input file, some letters may appear more than once. For a given
word, your program should not produce the same word more than once, and the words should
be output in alphabetically ascending order.

The Input

The input file consists of several words. The first line contains a number giving the number
of words to follow. Each following line contains one word. A word consists of uppercase or
lowercase letters from A to Z. Uppercase and lowercase letters are to be considered different.

The Output

For each word in the input file, the output file should contain all different words that can
be generated with the letters of the given word. The words generated from the same input
word should be output in alphabetically ascending order. An upper case letter goes before the
corresponding lower case letter.

Sample Input Sample Output

alAb
abc
acba

Aab
Aba
aAb
abA
bAa
baA
abc
acb
bac
bca
cab
cba
aabc
aacb
abac
abca
acab
acba
baac
baca
bcaa
caab
caba
cbaa




Problem D Ordering Tasks Problem D

UVa 10305

John has n tasks to do. Unfortunately, the tasks are not independent and the execution of
one task is only possible if other tasks have already been executed.

The Input

The input will consist of several instances of the problem. Each instance begins with a line
containing two integers, 1 < n < 100 and m. n is the number of tasks (numbered from 1 to n)
and m is the number of direct precedence relations between tasks. After this, there will be m
lines with two integers ¢ and j, representing the fact that task ¢« must be executed before task
j. An instance with n = m = 0 will finish the input.

The Output

For each instance, print a line with n integers representing the tasks in a possible order of
execution.

Sample Input
4

O, P, NP, O
O 01w w N

Sample Output
14253




Problem E Beehives Problem E

UVa 12544 (SWERC 2012)

Bees are one of the most industrious insects. Since they collect nectar and pollen from
flowers, they have to rely on the trees in the forest. For simplicity they numbered the n trees
from 0 to n — 1. Instead of roaming around all over the forest, they use a particular list of
paths. A path is based on two trees, and they can move either way i.e. from one tree to another
in straight line. They don’t use paths that are not in their list.

As technology has been improved a lot, they also changed their working strategy. Instead
of hovering over all the trees in the forest, they are targeting particular trees, mainly trees with
lots of flowers. So, they planned that they will build some new hives in some targeted trees.
After that they will only collect their foods from these trees. They will also remove some paths
from their list so that they don’t have to go to a tree with no hive in it.

Now, they want to build the hives such that if one of the paths in their new list go down
(some birds or animals disturbs them in that path) it’s still possible to go from any hive to
another using the existing paths.

They don’t want to choose less than two trees and as hive-building requires a lot of work,
they need to keep the number of hives as low as possible. Now you are given the trees with the
paths they use, your task is to propose a new bee hive colony for them.

Input

Input starts with an integer 7' (T' < 50), denoting the number of test cases.

Each case starts with a blank line. Next line contains two integers n (2 < n < 500) and m
(0 < m < 20000), where n denotes the number of trees and m denotes the number of paths.
Each of the next m lines contains two integers u v (0 < u, v < n, u # v) meaning that there is
a path between tree u and v. Assume that there can be at most one path between tree u to v,
and needless to say that a path will not be given more than once in the input.

Output

For each case, print the case number and the number of beehives in the proposed colony or
‘impossible’ if its impossible to find such a colony.

NOTE: Dataset is huge. Use faster I/O methods.

Sample Input 1 Sample Output
3 Case 1: 3
Case 2: impossible
33 56 Case 3: 3
01 01
12 12
20 13
23
21 0 4
01 3 4




