Using Ratings & Posters for Anime & Manga Recommendations

Jill-Jênn Vie

August 31, 2017

Recommendation System

Problem

- Every user rates few items (1 %)
- How to infer missing ratings?

	EXORCIST	Avenders		
Bob	4	3	5	1
Ana	2	4	2	5
Elain	5	4	4	3
Sulman	2	3	1	4

Every supervised machine learning algorithm fit(X, y)

X		у
user_id	work_id	rating
24	823	like
12	823	dislike
12	25	favorite

 $\hat{y} = \operatorname{predict}(X)$

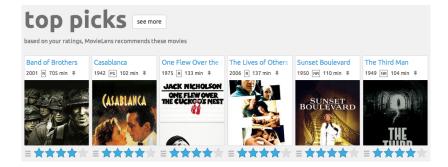
	ŷ	
user_id	work_id	rating
24	25	?disliked
12	42	?liked

Evaluation: Root Mean Squared Error (RMSE)

If I predict \hat{y}_i for each user-work pair to test among *n*, while truth is y_i^* :

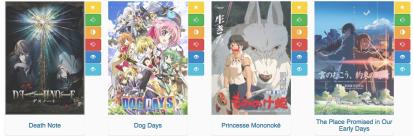
$$RMSE(\hat{y}, y^*) = \sqrt{\frac{1}{n} \sum_{i} (\hat{y}_i - y_i^*)^2}.$$

Dataset 1: Movielens



- 700 users
- 9000 movies
- 100000 ratings

Dataset 2: Mangaki



- 2100 users
- 15000 works

310000 ratings fav / like / dislike / neutral / willsee / wontsee

anime / manga / OST

- User can rate anime or manga
- And receive recommendations
- Also reorder their watchlist
- Code is 100% on GitHub
- Awards from Microsoft and Kokusai Köryü Kikin
- Ongoing data challenge on universityofbigdata.net

$\mathsf{KNN} \to \mathsf{measure\ similarity}$

K-nearest neighbors

- ► R_u represents the row vector of user u in the rating matrix (users × works).
- Similarity score between users (cosine):

$$score(u, v) = \frac{\mathcal{R}_u \cdot \mathcal{R}_v}{||\mathcal{R}_u|| \cdot ||\mathcal{R}_v||}.$$

- Let's identify the k-nearest neighbors of user u
- And recommend to user u what u's neighbors liked but u didn't see

Hint

If R' the $N \times M$ matrix of rows $\frac{\mathcal{R}_u}{||\mathcal{R}_u||}$, we can get the $N \times N$ score matrix by computing $R' R'^T$.

PCA, SVD \rightarrow reduce dimension to generalize Matrix factorization

Each row \mathcal{R}_u is a linear combination of profiles P.

Interpreting Key Profiles

If P	P_1 : adventure	P_2 : romance	P_3 : plot twist
And C_u	0,2	-0,5	0,6

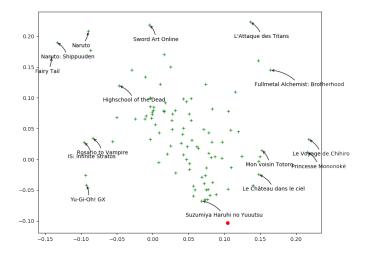
 \Rightarrow *u* likes a bit adventure, hates romance, loves plot twists.

Singular Value Decomposition

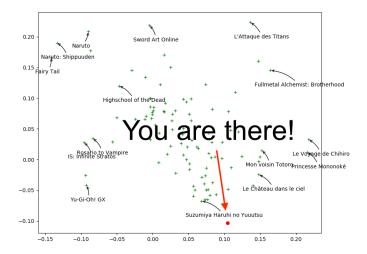
 $R = (U \cdot \Sigma)V^T$ where $U : N \times r$ et $V : M \times r$ are orthogonal and $\Sigma : r \times r$ is diagonal.

Visualizing first two columns of V_i in SVD

Closer points mean similar taste



Find your taste by plotting first two columns of U_i You will like movies that are close to you



Variants of Matrix Factorization

R ratings, C coefficients, P profiles (F features).

$$R = CP = CF^T \Rightarrow r_{ij} \simeq \hat{r}_{ij} \triangleq C_i \cdot F_j.$$

Objective functions (reconstruction error) to minimize

 $\begin{aligned} &\text{SVD} : \sum_{i,j} (r_{ij} - C_i \cdot F_j)^2 \text{ (deterministic)} \\ &\text{ALS} : \sum_{i,j \text{ known}} (r_{ij} - C_i \cdot F_j)^2 \\ &\text{ALS-WR} : \sum_{i,j \text{ known}} (r_{ij} - C_i \cdot F_j)^2 + \lambda (\sum_i N_i ||C_i||^2 + \sum_j M_j ||F_j||^2) \\ &\text{WALS by Tensorflow}^{\text{TM}} : \end{aligned}$

$$\sum_{i,j} w_{ij} \cdot (r_{ij} - C_i \cdot F_j)^2 + \lambda (\sum_i ||C_i||^2 + \sum_j ||F_j||^2)$$

Who do you think wins?

About the Netflix Prize

- On October 2, 2006, Netflix organized an online contest: The first one who beats our algorithm (Cinematch) by more than 10% will receive 1,000,000 USD. and gave anonymized data
- Half of world AI community suddenly became interested in this problem
- October 8, someone beat Cinematch
- October 15, 3 teams beat it, notably by 1.06%
- June 26, 2009, team 1 beat Cinematch by 10.05% → last call: still one month to win
- July 25, 2009, team 2 beat Cinematch by 10.09%
- Team 1 does 10.09% also
- 20 minutes later team 2 does 10.10%
- ... Actually, both teams were ex æquo on the validation set
- ... So the first team to send their results won (team 1, 10.09%)

Privacy concerns

- August 2009, Netflix wanted to restart a contest
- Meanwhile, in 2007 two researchers from Texas University could de-anonymize users by crossing data with IMDb
- (approximate birth year, zip code, watched movies)
- In December 2009, 4 Netflix users sued Netflix
- ▶ March 2010, amicable settlement (*enmankaiketsu*)
 → complaint is closed

ALS for feature extraction

R = CP

Issue: Item Cold-Start

- ► If no ratings are available for an anime ⇒ no feature will be trained
- If anime features at put to 0
 ⇒ prediction of ALS will be constant for every unrated anime.

But we have posters!

- On Mangaki, almost all works have a poster
- How to extract information?

Illustration2Vec (Saito and Matsui, 2015)

General Tag Confidence 1. 1girl 86.1% 2. thighhighs 84.0% solo red hair 73.1% 66.4% 5. long hair 53.7% breasts 6. 38.0% gloves 34.0% 8. weapon 9. elbow gloves 28.3% 10. high heels 14.0% 11. tattoo 10.9% # Character Tag # Copyright Tag # Rating 1. safe 68.4% 2. questionable 3. explicit 1.92%

Prediction results

- CNN pretrained on ImageNet, trained on Danbooru (1.5M illustrations with tags)
- 502 most frequent tags kept, outputs tag weights

LASSO for explanation of user preferences T matrix of 15000 works \times 502 tags

- Each user is described by its preferences P
 - \rightarrow a sparse row of weights over tags.
- Estimate user preferences P such that $r_{ij} \simeq PT^T$.

Interpretation and explanation

You seem to like magical girls but not blonde hair ⇒ Look! All of them are brown hair! Buy now!

Least Absolute Shrinkage and Selection Operator (LASSO)

$$\frac{1}{2N_i} \left\| \mathcal{R}_i - \mathcal{P}_i T^T \right\|_2^2 + \alpha \left\| \mathcal{P}_i \right\|_1.$$

where N_i is the number of items rated by user *i*.

Blending

We would like to do:

$$\hat{r}^{BALSE}_{ij} = \begin{cases} \hat{r}^{ALS}_{ij} & \text{if item } j \text{ was rated at least } \gamma \text{ times} \\ \hat{r}^{LASSO}_{ij} & \text{otherwise} \end{cases}$$

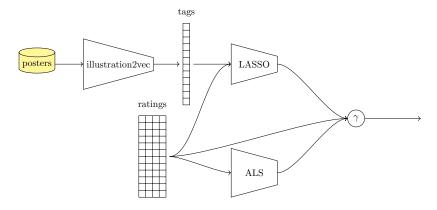
But we can't. Why?

$$\hat{r}_{ij}^{BALSE} = \sigma(\beta(R_j - \gamma))\hat{r}_{ij}^{ALS} + (1 - \sigma(\beta(R_j - \gamma)))\hat{r}_{ij}^{LASSO}$$

where R_j denotes the number of ratings of item j β and γ are learned by stochastic gradient descent.

We call this gate the Steins;Gate.

Blended Alternate Least Squares with Explanation



We call this model BALSE.

Results

RMSE	Test set	1000 least rated (1.5%)	Cold-start items
ALS	1.157	1.299	1.493
LASSO	1.446	1.347	1.358
BALSE	1.150	1.247	1.316

Thank you!

Read this article

http://jiji.cat/bigdata/balse.pdf (soon on arXiv)

Compete to Mangaki Data Challenge

research.mangaki.fr (problem + University of Big Data)

Reproduce our results on GitHub

github.com/mangaki

Follow us on Twitter: @MangakiFR