Using Ratings & Posters for Anime & Manga Recommendations

Jill-Jênn Vie¹³ Florian Yger² Ryan Lahfa³ Basile Clement³ Kévin Cocchi³ Thomas Chalumeau³ Hisashi Kashima¹⁴

¹ RIKEN Center for Advanced Intelligence Project (Tokyo)
² Université Paris-Dauphine (France)
³ Mangaki (Paris, France)
⁴ Kyoto University

Intro	Recommender Systems	Our method	Experiments
●000		0000000	000000
Mangaki.fr			

- User can rate anime or manga (works)
- And receive recommendations
- And reorder their watchlist

- Code is 100% on GitHub
- Awards from Microsoft and Japan Foundation
- Organized a data challenge with Kyoto University

Intro 0●00

RIKEN Center for Advanced Intelligence Project

Director: Masashi Sugiyama (D.Eng.)

- New AI lab near Tokyo Station (opened in 2016)
- 8 accepted papers at NIPS 2017

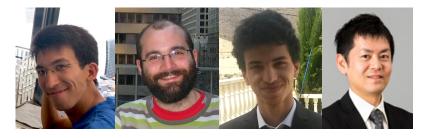
Intro	
0000	

Recommender Systems

Our method

Experiments 000000

Authors



Jill-Jênn Vie Florian Yger Ryan Lahfa Hisashi Kashima

- Florian Yger was visiting RIKEN AIP
- Kévin Cocchi & Thomas Chalumeau were interns at Mangaki

Intro	Recommender Systems	Our method	Experiments
000●		0000000	000000
Outline			

1. Usual algorithms for recommender systems

- Content-based
- Collaborative filtering

2. Our method

- Extracting tags from posters
- Blending models

3. Experiments

- Dataset: Mangaki
- Results

oooo	ecommender Systems ●000000000	Our method	experiments 000000
Recomn	nender Systems		
Proble	em		

- Every user rates few items (1 %)
- How to infer missing ratings?

Example

	ZOODPIE	ARRENT OF AR	SEUL SUR MARS	
Sacha	?	5	2	?
Ondine	4	1	?	5
Pierre	3	3	1	4
Joëlle	5	?	2	?

oooo	Recommender Systems	Our method	Experiments 000000
Recomm	nender Systems		
Proble	em		

- Every user rates few items (1 %)
- How to infer missing ratings?

Example

	ZOOOPE	ADDATE	SEUL SUR MARS	
Sacha	3	5	2	2
Ondine	4	1	4	5
Pierre	3	3	1	4
Joëlle	5	2	2	5

Intro 0000	Recommender Systems	Our method 00000000	Experiments 000000
Usual te	chniques		

Content-based

(work features: directors, genre, etc.)

- Linear regression
- Sparse linear regression (LASSO)

Collaborative filtering

- K-nearest neighbors
- Matrix factorization:
 - Singular value decomposition
 - Alternating least squares
 - Stochastic gradient descent

Hybrid recommender systems

• The proposed method

(solely based on ratings)

(combine those two)

Intro 0000		Recommender 000●000000		Our method 00000000	Experiments 000000
Exa	mple: <i>K</i> -l	Nearest	Neighbors		
	Ratings	Paprika	Pearl Harbor	An Inconvenient Truth	
	Justin	3	1	3	
	Angela	?	2	2	
	Donald	-3	2	-4	
	Emmanuel	?	-1	4	
	$\mathrm{Shinz}\bar{\mathrm{o}}$	4	-1	-3	
	Donald			Angela	
	~			1	
			Pearl Harbor	n Inconvenient Truth	
	Shinz	ō		Emmanuel	

Recommender Systems	Our method	Experiments
00000000		

An Inconvenient Truth

3

2

-4

4

-3

Shinzo

0.090

-0.555

-0,073

-0.523

1

Emmanuel

0.612

0,514

-0,811

1

-0,523

Pearl Harbor

1

2

2

 $^{-1}$

 $^{-1}$

Donald

-0.809

-0.263

1

-0.811

-0,073

Angela

0.649

1

-0,263

0.514

-0,555

Example: K-Nearest Neighbors

Paprika

3

?

-3

3,5

4

Justin

1

0.649

-0,809

0.612

0,090

Ratings

Justin

Angela

Donald

Emmanuel

Shinzō

Similarity

Justin

Angela

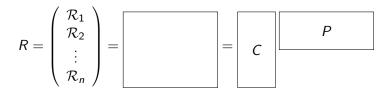
Donald

Emmanuel

Shinzō

Intro Recommender Systems		Our method	Experiments		
0000		0000000000		00000000	000000
	c .				1.

Matrix factorization ightarrow reduce dimension to generalize



 $R: 2k \text{ users} \times 15k \text{ works} \iff \begin{cases} C: 2k \text{ users} \times 20 \text{ profiles} \\ P: 20 \text{ profiles} \times 15k \text{ works} \end{cases}$

 \mathcal{R}_{Bob} is a linear combination of profiles P_1 , P_2 , etc..

Interpreting Key Profiles					
If P	P ₁ : adventure	P ₂ : romance	P_3 : plot twist		
And C_u	0,2	-0,5	0,6		
$\Rightarrow u$ likes	<mark>a bit</mark> adventure	, <mark>hates</mark> romance	e, <mark>loves</mark> plot twists.		

AA/. to be a st			<u>۱</u>
0000	0000000000	0000000	000000
Intro	Recommender Systems	Our method	Experiments

Weighted Alternating Least Squares (Zhou, 2008)

R ratings, U user features, V work features.

$$R = UV^T \Rightarrow r_{ij} \simeq \hat{r}_{ij}^{ALS} \triangleq U_i \cdot V_j.$$

Objective function to minimize

$$U, V \mapsto \sum_{i,j \text{ known}} (r_{ij} - U_i \cdot V_j)^2 + \lambda \left(\sum_i N_i ||U_i||^2 + \sum_j M_j ||V_j||^2 \right)$$

where:

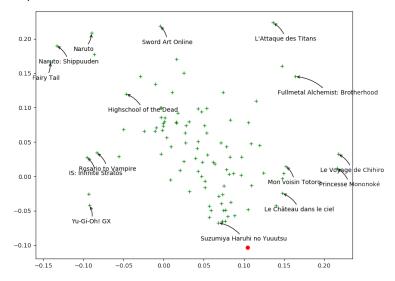
- N_i: number of ratings by user i
- *M_j*: number of ratings for item *j*

Algorithm

Until convergence (~ 10 iterations):

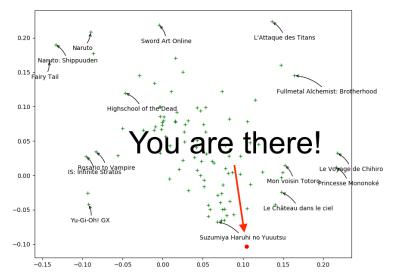
- Fix U find V (just linear regression \rightarrow least squares)
- Fix V find U

Closer points mean similar taste



Find your taste by plotting first two columns of U_i

You will like anime that are in your direction



Intro 0000		Recommender Systems		Our method 00000000	Experiments 000000

Drawback with collaborative filtering

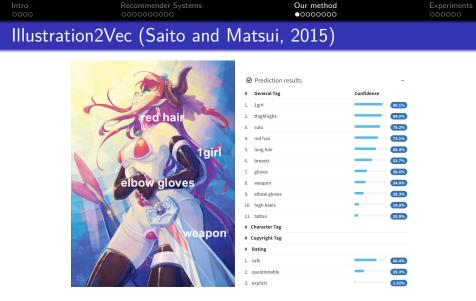
Issue: Item Cold-Start

- If no ratings are available for a work j
 - \Rightarrow Its features V_j cannot be trained :-(

No way to distinguish between unrated works.

But we have posters!

- On Mangaki, almost all works have a poster
- How to extract information?



- CNN (VGG-16) pretrained on ImageNet, trained on Danbooru (1.5M illustrations with tags)
- 502 most frequent tags kept, outputs tag weights

Intro	Recommender Systems	Our method	Experiments
0000		o●oooooo	000000
LASSO for s	parse linear regression		

T matrix of 15000 works \times 502 tags (t_{jk} : tag k appears in item j)

- Each user is described by its preferences P_i
 - \rightarrow a sparse row of weights over tags.
- Estimate user preferences P_i such that

$$r_{ij} \simeq \hat{r}_{ij}^{LASSO} \triangleq \mathbf{P}_i T_j^T.$$

Least Absolute Shrinkage and Selection Operator (LASSO)

$$P_i \mapsto \frac{1}{2N_i} \|\mathcal{R}_i - P_i T^T\|_2^2 + \alpha \|P_i\|_1.$$

where N_i is the number of items rated by user *i*.

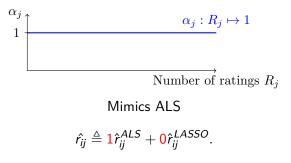
Interpretation and explanation of user preferences

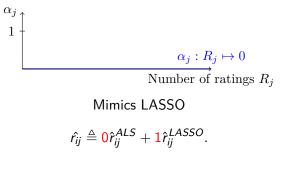
You seem to like magical girls but not blonde hair
⇒ Look! All of them are brown hair! Buy now!

Combine			
Intro	Recommender Systems	Our method	Experiments

Which model should be choose between ALS and LASSO? Answer Both! Methods boosting, bagging, model stacking, blending. Idea find α_j s.t. $\hat{r}_{ij} \triangleq \alpha_j \hat{r}_{ij}^{ALS} + (1 - \alpha_j) \hat{r}_{ij}^{LASSO}$.

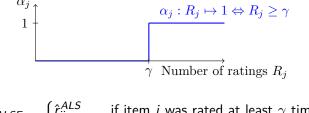
Intro	Recommender Systems	Our method	Experiments
0000		000●0000	000000
Examples	s of α_j		





We call this gate the Steins;Gate.

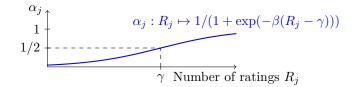
Intro	Recommender Systems	Our method	Experiments
0000		ooooo●oo	000000
Example	s of α_i		



 $\hat{r}_{ij}^{BALSE} = \begin{cases} \hat{r}_{ij}^{ALS} & \text{if item } j \text{ was rated at least } \gamma \text{ times} \\ \hat{r}_{ij}^{LASSO} & \text{otherwise} \end{cases}$

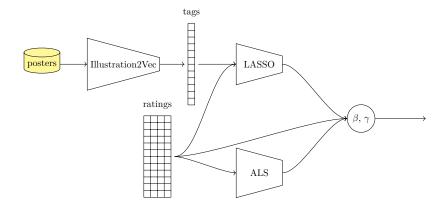
But we can't: Not differentiable!

Intro 0000	Recommender Systems	Our method	Experiments 000000
Example	s of α .		



 $\hat{r}^{BALSE}_{ij} = \sigma(eta(R_j - \gamma))\hat{r}^{ALS}_{ij} + (1 - \sigma(eta(R_j - \gamma)))\hat{r}^{LASSO}_{ij}$

 β and γ are learned by stochastic gradient descent. We call this gate the <code>Steins;Gate</code>.



We call this model **BALSE**.

In		
	000	

Recommender Systems

Our method

Experiments 00000

Dataset: Mangaki

- 2300 users
- 15000 works

anime / manga / OST • 340000 ratings fav / like / dislike / neutral / willsee / wontsee

Intro	Recommender Systems	Our method	Experiments
0000		0000000	00000
Evaluatio	on [.] Root Mean Square	ed Error (RMSE)	

If we predict \hat{r}_{ij} for each user-work pair (i, j) to test among n, while truth is r_{ij} :

$$\mathsf{RMSE}(\hat{r},r) = \sqrt{\frac{1}{n}\sum_{i,j}(\hat{r}_{ij}-r_{ij})^2}.$$

0000	000000000	0000000	00000
Cross vali	dation		

- 80% of the ratings are used for training
- $\bullet~20\%$ of the ratings are kept for testing

Differents sets of items:

- Whole test set of works
- 1000 works least rated (1.5%)
- Cold-start: works not seen in the training set (only the posters)

Intro	Recommender Systems	Our method	Experiments
0000		00000000	000●00
Results			

RMSE	Test set	1000 least rated (1.5%)	Cold-start items
ALS	1.157	1.299	1.493
LASSO	1.446	1.347	1.358
BALSE	1.150	1.247	1.316

Intro	Recommender Systems	Our method	Experiments
0000		0000000	0000●0
Summing up			

We presented BALSE, a model that:

- uses information in the ratings (collaborative filtering)
- uses information in the posters using CNNs (content-based)
- combine them in a nonlinear way

to improve the recommendations, and explain them.

Further work

- Use latent features (not only tags) of the posters (IJCAI 2016)
- End-to-end training (not separately)

Intro	Recommender Systems	Our method	Experiments
0000		0000000	00000●
Thank you!			

Try it: https://mangaki.fr

Twitter: @MangakiFR

Read the article

Using Posters to Recommend Anime and Mangas in a Cold-Start Scenario github.com/mangaki/balse (PDF on arXiv, front page of HNews)

Results of Mangaki Data Challenge: research.mangaki.fr

- 1. Ronnie Wang (Microsoft Suzhou, China)
- 2. Kento Nozawa (Tsukuba University, Japan)
- 3. Jo Takano (Kobe University, Japan)