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Mangaki.fr

User can rate anime or manga (works)
And receive recommendations
And reorder their watchlist

Code is 100% on GitHub
Awards from Microsoft and Japan Foundation
Organized a data challenge with Kyoto University
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RIKEN Center for Advanced Intelligence Project

New AI lab near Tokyo Station (opened in 2016)
8 accepted papers at NIPS 2017
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Outline

1. Usual algorithms for recommender systems
Content-based
Collaborative filtering

2. Our method
Extracting tags from posters
Blending models

3. Experiments
Dataset: Mangaki
Results
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Recommender Systems

Problem
Every user rates few items (1 %)
How to infer missing ratings?

Example

Sacha ? 5 2 ?
Ondine 4 1 ? 5
Pierre 3 3 1 4
Joëlle 5 ? 2 ?
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Recommender Systems

Problem
Every user rates few items (1 %)
How to infer missing ratings?

Example

Sacha 3 5 2 2
Ondine 4 1 4 5
Pierre 3 3 1 4
Joëlle 5 2 2 5
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Usual techniques

Content-based (work features: directors, genre, etc.)

Linear regression
Sparse linear regression (LASSO)

Collaborative filtering (solely based on ratings)

K -nearest neighbors
Matrix factorization:

Singular value decomposition
Alternating least squares
Stochastic gradient descent

Hybrid recommender systems (combine those two)

The proposed method
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Example: K -Nearest Neighbors

Ratings Paprika Pearl Harbor An Inconvenient Truth
Justin 3 1 3

Angela ? 2 2

Donald −3 2 −4

Emmanuel ? −1 4

Shinzō 4 −1 −3

Justin

AngelaDonald

EmmanuelShinzō

An Inconvenient Truth

Pearl Harbor
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Example: K -Nearest Neighbors

Ratings Paprika Pearl Harbor An Inconvenient Truth
Justin 3 1 3

Angela ? 2 2

Donald −3 2 −4

Emmanuel 3,5 −1 4

Shinzō 4 −1 −3

Similarity Justin Angela Donald Emmanuel Shinzo
Justin 1 0,649 −0,809 0,612 0,090

Angela 0,649 1 −0,263 0,514 −0,555

Donald −0,809 −0,263 1 −0,811 −0,073

Emmanuel 0,612 0,514 −0,811 1 −0,523

Shinzō 0,090 −0,555 −0,073 −0,523 1
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Matrix factorization → reduce dimension to generalize

R =


R1
R2
...
Rn

 = = C
P

R: 2k users × 15k works ⇐⇒
{

C : 2k users × 20 profiles
P: 20 profiles × 15k works

RBob is a linear combination of profiles P1, P2, etc..

Interpreting Key Profiles
If P P1: adventure P2: romance P3: plot twist
And Cu 0,2 −0,5 0,6
⇒ u likes a bit adventure, hates romance, loves plot twists.
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Weighted Alternating Least Squares (Zhou, 2008)

R ratings, U user features, V work features.

R = UV T ⇒ rij ' r̂ALS
ij , Ui · Vj .

Objective function to minimize

U,V 7→
∑

i ,j known (rij −Ui ·Vj)2 +λ
(∑

i Ni ||Ui ||2 +
∑

j Mj ||Vj ||2
)

where:
Ni : number of ratings by user i
Mj : number of ratings for item j

Algorithm
Until convergence (~ 10 iterations):

Fix U find V (just linear regression → least squares)
Fix V find U
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Visualizing first two components of anime Vj

Closer points mean similar taste
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Find your taste by plotting first two columns of Ui

You will like anime that are in your direction
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Drawback with collaborative filtering

Issue: Item Cold-Start
If no ratings are available for a work j
⇒ Its features Vj cannot be trained :-(

No way to distinguish between unrated works.

But we have posters!
On Mangaki, almost all works have a poster
How to extract information?
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Illustration2Vec (Saito and Matsui, 2015)

CNN (VGG-16) pretrained on ImageNet, trained on Danbooru
(1.5M illustrations with tags)
502 most frequent tags kept, outputs tag weights
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LASSO for sparse linear regression
T matrix of 15000 works × 502 tags (tjk : tag k appears in item j)

Each user is described by its preferences Pi
→ a sparse row of weights over tags.
Estimate user preferences Pi such that

rij ' r̂LASSO
ij , PiT T

j .

Least Absolute Shrinkage and Selection Operator (LASSO)

Pi 7→
1

2Ni
‖Ri − PiT T‖22 + α‖Pi‖1.

where Ni is the number of items rated by user i .

Interpretation and explanation of user preferences
You seem to like magical girls but not blonde hair
⇒ Look! All of them are brown hair! Buy now!
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Combine models

Which model should be choose between ALS and LASSO?

Answer Both!

Methods boosting, bagging, model stacking, blending.

Idea find αj s.t. r̂ij , αj r̂ALS
ij + (1− αj)r̂LASSO

ij .
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Examples of αj

αj : Rj 7→ 1

Number of ratings Rj

αj

1

Mimics ALS

r̂ij , 1r̂ALS
ij + 0r̂LASSO

ij .
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Examples of αj

αj : Rj 7→ 0

Number of ratings Rj

αj

1

Mimics LASSO

r̂ij , 0r̂ALS
ij + 1r̂LASSO

ij .

We call this gate the Steins;Gate.
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Examples of αj

αj : Rj 7→ 1 ⇔ Rj ≥ γ

Number of ratings Rj

αj

γ

1

r̂BALSE
ij =

{
r̂ALS
ij if item j was rated at least γ times

r̂LASSO
ij otherwise

But we can’t: Not differentiable!
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Examples of αj

αj : Rj 7→ 1/(1 + exp(−β(Rj − γ)))

Number of ratings Rj

αj

γ

1
1/2

r̂BALSE
ij = σ(β(Rj − γ))r̂ALS

ij + (1− σ(β(Rj − γ))) r̂LASSO
ij

β and γ are learned by stochastic gradient descent.

We call this gate the Steins;Gate.
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Blended Alternate Least Squares with Explanation

posters Illustration2Vec

tags

LASSO

ALS

ratings
β, γ

We call this model BALSE.
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Dataset: Mangaki

2300 users
15000 works anime / manga / OST
340000 ratings fav / like / dislike / neutral / willsee / wontsee
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Evaluation: Root Mean Squared Error (RMSE)

If we predict r̂ij for each user-work pair (i , j) to test among n,
while truth is rij :

RMSE (r̂ , r) =
√√√√1

n
∑
i ,j

(r̂ij − rij)2.
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Cross-validation

80% of the ratings are used for training
20% of the ratings are kept for testing

Differents sets of items:

Whole test set of works
1000 works least rated (1.5%)
Cold-start: works not seen in the training set (only the posters)
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Results

RMSE Test set 1000 least rated (1.5%) Cold-start items
ALS 1.157 1.299 1.493
LASSO 1.446 1.347 1.358
BALSE 1.150 1.247 1.316
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Summing up

We presented BALSE, a model that:

uses information in the ratings (collaborative filtering)
uses information in the posters using CNNs (content-based)
combine them in a nonlinear way

to improve the recommendations, and explain them.

Further work
Use latent features (not only tags) of the posters (IJCAI 2016)
End-to-end training (not separately)
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Thank you!

Try it: https://mangaki.fr Twitter: @MangakiFR

Read the article
Using Posters to Recommend Anime and Mangas in a Cold-Start Scenario
github.com/mangaki/balse (PDF on arXiv, front page of HNews)

Results of Mangaki Data Challenge: research.mangaki.fr
1. Ronnie Wang (Microsoft Suzhou, China)
2. Kento Nozawa (Tsukuba University, Japan)
3. Jo Takano (Kobe University, Japan)
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