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ABSTRACT
Computerized adaptive testing (CAT) is a mode of testing
which has gained increasing popularity over the past years.
It selects the next question to ask to the examinee in order
to evaluate her level efficiently, by using her answers to the
previous questions. Traditionally, CAT systems have been
relying on item response theory (IRT) in order to provide
an effective measure of latent abilities in possibly large-scale
assessments. More recently, from the perspective of provid-
ing useful feedback to examinees, other models have been
studied for cognitive diagnosis. One of them is the q-matrix
model, which draws a link between questions and examinee
knowledge components. In this paper, we define a proto-
col based on performance prediction to evaluate adaptive
testing algorithms. We use it to evaluate q-matrices in the
context of assessments and compare their behavior to item
response theory. Results computed on three real datasets
of growing size and of various nature suggest that tests of
different type need different models.
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1. INTRODUCTION
Automated assessment of student answers has lately gained
popularity in the context of online initiatives such as massive
online open courses (MOOCs). Such systems must be able
to rank thousands of students for evaluation or recruiting
purposes and to provide personal feedback automatically for
formative purposes.

For computerized adaptive tests (CAT), item response the-
ory (IRT) provides the most common models [3]. IRT pro-
vides a framework to evaluate the performance of individual
questions, called items, on assessments [6]. When the in-
tention is more formative, examinees can receive a detailed
feedback, specifying which knowledge components (KCs) are
mastered and which ones are not [1]. Most of these models
rely on a q-matrix specifying for each question the different
KCs required to solve it.

We propose a protocol to evaluate adaptive testing algo-
rithms and use it to compare the performances of the sim-
plest IRT model, the 1-parameter logistic one, commonly
known as Rasch model, with the simplest Q-matrix model.
We expect to answer the following question: given a budget

of questions of a certain dataset asked according to a cer-
tain adaptive selection rule, which model performs the best
at predicting the answers of the examinee over the remaining
questions? We managed to get satisfactory results, enabling
us to state that no model dominates in all cases: according
to the type of test, either the Rasch model or the q-matrix
performs the best.

2. BACKGROUND AND RELATED WORK
2.1 Item Response Theory: Rasch Model
The Rasch model estimates the latent ability of a student by
a unique real number θ modeled by a random variable and
characterizes each question by one real number: its difficulty
d, corresponding to the ability needed to answer the ques-
tion correctly. Knowing those parameters, the probability
of the event “the student of ability θ answers the question
of difficulty d correctly”, denoted by success, is modeled by:

Pr{success|θ} =
1

1 + e−(θ−d) .

The aim is first to optimize the parameters dj for each ques-
tion j and θi for each student i in order to fit a given train
dataset. Then, throughout the test, a probability distribu-
tion over θi is updated after each question answered, using
the Bayes’ rule.

2.2 Cognitive Diagnosis Model: Q-matrix
We now present a model that tries to be more informative
about the student’s knowledge components. Every student
is modeled by a vector of binary values (a1, . . . , aK), called
knowledge vector, representing her mastery of K distinct
KCs. A q-matrix Q [7] represents the different KCs involved
in answering every question. In the NIDA model considered
here [3], Qij is equal to 1 if the KC j is required to succeed
at question i, 0 otherwise. More precisely, we denote by si
(gi) the slip (guess) parameter of item i. The probability of
a correct response at item i is 1− si if all KCs involved are
mastered, gi if any required KC is not mastered.

The KCs are considered independent, thus the student’s
knowledge vector is implemented as a vector of size K indi-
cating for each KC the probability of the student to master
it. Throughout the test, this vector is updated using Bayes’
rule. From this probability distribution and with the help
of our q-matrix, we can derive the probability for a given
student to answer correctly any question of the test.



3. ADAPTIVE TESTING FRAMEWORK
Our student data is a dichotomous matrix of size NS ×NQ
where NS and NQ denote respectively the number of stu-
dents and the number of questions, and cij equals 1 if stu-
dent i answered the question j correctly, 0 otherwise.

We detail our random subsampling validation method. Once
the model has been trained, for each student of the test
dataset, a CAT session is simulated. In order to reduce
uncertainty at most, at each step we pick the question that
maximizes the Fisher information and ask it to the student.
The student parameters are updated according to her answer
and a performance indicator at the current step is computed.
To compare it to the ground truth, we choose the negative
log-likelihood [5], that we will denote by “mean error”.

4. EVALUATION
We compared an R implementation of the Rasch model
(IRT) and our implementation of the NIDA q-matrix model
(Q) for different values of the parameter K, the number of
columns of the q-matrix. Our algorithms were tested over
three real datasets:
SAT dataset [4]. Results from 296 students on 40 ques-
tions from the 4 following topics of a SAT test: Mathematics,
Biology, World History and French.
Fraction dataset [2]. Responses of 536 students to 20
questions about fraction subtraction.
Castor dataset. Answers of 6th and 7th graders competing
in a K-12 Computer Science contest which was composed of
17 tasks. It is a 58939× 17 matrix, where the (i, j) entry is
1 if contestant i got full score on task j, 0 otherwise.

Results are presented in Table 1 where the best performances
are shown in bold. As a reference, 1.0 is the error obtained
by the trivial algorithm affecting 1/2 to every probability.
On the Castor dataset, IRT performs better than Q for any
value of K throughout the whole test. On the Fraction
dataset, the handmade q-matrix achieves the highest error.
In the early questions of the test, Q algorithms forK = 8 and
11 perform slightly better than IRT. The Fraction dataset
is a calculus test: it requires tangible, easy-to-define knowl-
edge components. Therefore, after a few carefully chosen
questions Q can estimate reasonably the performance of an
examinee over the remaining ones. On the SAT dataset, IRT
achieves the lowest error among all tested algorithms. We
also observe that the variance increases throughout the test,
probably because the behavior of the algorithm may vary
substantially if the remaining questions are from a different
topic than the beginning of the test.

5. DISCUSSION AND FUTURE WORK
Our comparison of the cognitive diagnosis model with IRT
seems to indicate that q-matrices perform better on a certain
type of tests; in the Fraction test, there are redundancies
from one question to another in order to check that a notion
is known and mastered. Conversely, IRT performs better on
both the SAT test and Castor contest, which is remarkable
given its simplicity. The fact that the SAT test is multidis-
ciplinary explains the difficulty of all considered algorithms
in predicting the answers, and the nature of Castor as a
contest may require a notion of level instead of knowledge
mastery. Therefore, in those cases, we will prefer to use the
Rasch model. In order to confirm this behavior, we plan to
test our implementation on many other datasets.
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Castor After 4 q. After 10 q. After 16 q.
Q K = 2 0.555 ± 0.004 0.456 ± 0.005 0.167 ± 0.012
Q K = 5 0.574 ± 0.004 0.460 ± 0.006 0.206 ± 0.016
Q K = 8 0.520 ± 0.004 0.409 ± 0.006 0.148 ± 0.013
Q K = 11 0.519 ± 0.004 0.462 ± 0.007 0.218 ± 0.014
Q K = 14 0.515 ± 0.003 0.449 ± 0.006 0.169 ± 0.014

IRT 0.484 ± 0.003 0.346 ± 0.005 0.111 ± 0.010

Fraction
Q K = 2 0.464 ± 0.012 0.326 ± 0.013 0.196 ± 0.017
Q K = 5 0.440 ± 0.011 0.289 ± 0.014 0.146 ± 0.013
Q K = 8 0.407 ± 0.011 0.276 ± 0.015 0.159 ± 0.015
Q K = 11 0.395 ± 0.009 0.255 ± 0.013 0.156 ± 0.015
Q K = 14 0.422 ± 0.009 0.274 ± 0.014 0.180 ± 0.018

IRT 0.435 ± 0.012 0.304 ± 0.013 0.142 ± 0.012
Q* K = 8 0.596 ± 0.008 0.346 ± 0.007 0.182 ± 0.007

SAT
Q K = 2 0.522 ± 0.007 0.417 ± 0.010 0.315 ± 0.018
Q K = 5 0.469 ± 0.007 0.365 ± 0.012 0.306 ± 0.019
Q K = 8 0.463 ± 0.007 0.367 ± 0.013 0.242 ± 0.018
Q K = 11 0.456 ± 0.008 0.364 ± 0.013 0.331 ± 0.023
Q K = 14 0.441 ± 0.007 0.350 ± 0.012 0.296 ± 0.021

IRT 0.409 ± 0.008 0.285 ± 0.012 0.248 ± 0.022

Table 1: Mean error of the different algorithms over the re-
maining questions of the Castor and Fraction datasets, after
a certain number of questions have been asked. The dashed
curve denotes the Rasch model (IRT), while the curves of
growing thickness denote q-matrices (Q) of growing num-
ber of columns. The dotted curve in Fraction denotes the
handmade q-matrix (Q*) [2].
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