
A Leakage-Resilient Spatial Encryption Scheme

Jill-Jênn Vie, Michel Abdalla, Crypto Team

August 23, 2011

This report is written in English because it is part of an upcoming research article.

The general context

A scheme is said leakage resilient if it remains secure even when an adversary is able to learn
partial information about some secret values used throughout the lifetime of the system.

This recent area appeared because of the need to develop schemes that resist to side-
channel attacks, such as power-consumption, fault or time analyses.

Today, there exist a few encryption schemes that implement this security model, notably
a leakage-resilient identity-based encryption scheme (IBE): a public-key encryption scheme
where the public keys are the identities, and a master key allows the generation of a secret
key for each identity.

The research problem

There exists a hierarchical variant of the IBE scheme (HIBE), in which the identities form
the nodes of a tree called hierarchy. Any identity can delegate secret keys to its successors
and the root identity has a master key. Each node is associated with an identity vector,
which represents the sequence of identities from the root to this node.

A spatial encryption scheme is a generalization of HIBE, in which keys are associated
to affine spaces. In spatial encryption, any user possessing a secret key for an affine space
can delegate secret keys for any of its affine subspaces, for the natural inclusion. To date,
none of the existing constructions of spatial encryption are leakage resilient and the goal
of this project is to propose one such construction.

Contributions

In this work, we propose the first leakage-resilient spatial encryption scheme. Our scheme
works over bilinear groups of composite order, has constant-size ciphertexts, and is rea-
sonably efficient. To achieve this goal, we adapted an existing leakage-resilient HIBE

1

construction due to Lewko, Rouselakis, and Waters in TCC 2011 to the spatial encryption
setting. More precisely, we showed how to combine the Lewko-Rouselakis-Waters technique
for achieving leakage resilience with a previous construction of spatial encryption due to
Boneh and Hamburg in ASIACRYPT 2008.

Arguments supporting its validity

In order to show evidence that our new construction of leakage-resilient spatial encryption
is sound, we also prove it secure in a formal security model. The proof of security is based
on existing standard complexity assumptions over bilinear groups of composite order. As
we show in the report, the resulting scheme remains secure even when the adversary learns
partial information about the secret keys associated with each affine space, including the
entire space.

Summary and future work

In this work, we have designed the first leakage-resilient spatial encryption scheme. Since
spatial encryption includes identity-based and hierarchical identity-based encryption as spe-
cial cases, previous solutions such as the Lewko-Rouselakis-Waters leakage-resilient HIBE
construction can be seen as a particular instantiation of our construction. In addition to
having constant-size ciphertexts and being reasonably efficient, our scheme is proven se-
cure based on existing standard complexity assumptions over bilinear groups of composite
order.

Unfortunately, as mentioned in the report, our scheme does not tolerate leakage during
key updates. To address this problem and obtain a scheme with stronger security guar-
antees, a promising future research direction would be to adapt a recent result by Lewko,
Lewko and Waters in STOC 2011 to the spatial encryption scenario.

2

A Leakage-Resilient Spatial Encryption Scheme

Jill-Jênn Vie
Supervisor: Michel Abdalla

Crypto Team

August 23, 2011

Contents

1 Introduction 2
1.1 Leakage Models . 2
1.2 Spatial Encryption . 2
1.3 Outline . 3

2 Preliminaries 3
2.1 Composite Order Bilinear Groups . 3
2.2 Complexity Assumptions . 4

3 Generalized Identity-Based Encryption 5
3.1 Identity-Based Encryption . 5
3.2 Hierarchical Identity-Based Encryption . 5
3.3 Spatial Encryption . 6

4 Our New Leakage-Resilient Spatial Encryption Scheme 7
4.1 A Few Useful Notations . 7
4.2 Construction . 7
4.3 Security Definition . 9
4.4 Proof Overview . 12

5 Concluding Remarks 13

References 16

A Security Proof 18
A.1 Semi-functionality . 18
A.2 Lemma for Leakage Analysis . 18
A.3 Proof . 19

1

1 Introduction

When a theoretical scientist designs a cryptosystem, he is often unpleasantly surprised by
the weaknesses its physical implementation can induce1. Indeed, history has proven that
these attempts to break the system, called side-channel attacks, can be devastating.

In order to design schemes that can provably resist these attacks, a stronger notion of
security has been established. A leakage-resilient scheme considers that an attacker is able
to learn partial information about some secret values used throughout the lifetime of the
system.

1.1 Leakage Models

Our achievement of leakage resilience will be based on the model of memory attacks, in-
troduced by Akavia, Goldwasser, and Vaikuntanathan [AGV09]. According to it, the
adversary can learn arbitrary information about the secret state of a system, by selecting
polynomial-time computable functions fi : {0, 1}∗ → {0, 1}λi and learning the value of fi
applied to the internal state of the system.

As described in [BSW11], there are two main variants of the memory attacks model,
known as the bounded-leakage and the continual-leakage models.

In a bounded-leakage model, we define a leakage bound λ such that the overall amount
of information learned by the adversary throughout the entire lifetime of the system is∑

i λi ≤ λ.
If a system is used continually for a sufficiently long time, then any static piece of

information that stays unmodified on the system can eventually be recovered by the ad-
versary. Thus, the secret keys of such systems must be periodically refreshed. Recently,
Dodis et al. [DHLAW10] suggested the continual-leakage model, in which a scheme peri-
odically self-refreshes its internal secret key, while the corresponding public key remains
fixed. Therefore, it is the amount of leakage observed by the adversary in between any two
successive refreshes which is bounded by λ. We can think of λ as a leakage rate.

1.2 Spatial Encryption

The goal of this work is to consider leakage resilience in the context of spatial encryption,
which is a generic public-key cryptosystem first defined in [BH08] where vectors play the
role of public keys and secret keys are associated to affine spaces. In a spatial encryption
scheme, any user possessing a secret key for a certain space W1 can delegate a secret key for
a space W2 included in W1. A message encrypted for a certain vector u can be decrypted
by any user possessing a secret key associated to a space that contains u.

1Such as those due to a constant random number (cf. Sony’s ECDSA code in PS3), but this is another
problem.

2

In addition to proposing the concept of spatial encryption, Boneh and Hamburg [BH08]
also provided a construction based on bilinear maps which is provably secure in the selective
security model based on the BDDHE assumption ([BGW05]). In the selective secure model,
the adversary decides on the vector upon which he wants to be challenged before seeing the
public key of the scheme. Their work was later improved by Moriyama and Doi in [MD11]
who proposed a fully secure (as opposed to selective) spatial encryption scheme in the
standard model based on bilinear groups of composite order. In fact, the scheme that we
propose in this work can be seen as a generalization of Moriyama-Doi spatial encryption
scheme to leakage-resilient setting.

1.3 Outline

In Section 2, we will state our complexity assumptions. In Section 3, we will recall the
formal definition of spatial encryption along with those of identity-based and hierarchical
identity-based encryption, which are special cases of the former. In Section 4, we will
present our leakage-resilient spatial encryption scheme. It is worth noting that, to date,
none of the existing constructions of spatial encryption are leakage resilient and that our
scheme is the first one to achieve this level of security. We will end this report with a few
concluding remarks.

2 Preliminaries

2.1 Composite Order Bilinear Groups

Composite order bilinear groups were first used in cryptography by [BGN05] (see also
[Bon07]). We suppose the existence of an efficient group generator algorithm G which
takes as input the security parameter λ and outputs a description I = (N,G,GT , ê) of a
bilinear setting, where G and GT are cyclic groups of order N , and ê : G × G → GT is a
map with the following properties:

1. (bilinearity) ∀g, h ∈ G and a, b ∈ ZN it holds that ê(ga, hb) = ê(g, h)ab;

2. (non-degeneracy) ∃g ∈ G such that ê(g, g) has order N in GT .

We assume that the group descriptions of G and GT include generators of the respective
cyclic groups. We require that the group operations in G and GT as well as the bilinear
map ê are computable in deterministic polynomial time in λ. In our construction, we will
make hardness assumptions for bilinear settings whose order N is product of four distinct
primes each of length Θ(λ). For an integer m dividing N , we let Gm denote the subgroup
of G of order m. From the fact that the group is cyclic, it is easy to verify that if g and
h are group elements of co-prime orders then ê(g, h) = 1. This is called the orthogonality
property and is a crucial tool in our constructions.

3

2.2 Complexity Assumptions

To prove the security of our system, we will use the following assumptions in composite
order groups, also used in [LOS+10, LW10, LRW11]. The first two of them belong to the
class of Generalized Subgroup Decision Assumptions described in [BWY11]: in a bilinear
group of order N = p1 . . . pn, for each subset S ⊆ {1, . . . , n}, there exists GS = G∏

i∈S pi
subgroup of order

∏
i∈S pi. Let S0, S1 be two subsets. It is hard to distinguish a random

element from GS0 from a random element of GS1 , even if one is given random elements
from a family of (GZi) such that each Zi satisfy either S0 ∩Zi = ∅ = S1 ∩Zi or S0 ∩Zi #=
∅ #= S1 ∩ Zi.

Assumption 1. Given D1 = (N,G,GT , ê, g1, g3), no PPT (probabilistic polynomial-
time) adversary has a non-negligible advantage in distinguishing

T1 = ga1 from T2 = ga1g
b
2

where a, b
R←− ZN .

The advantage of an algorithm A in breaking Assumption 1 is defined as:

AdvA
1 (λ) =

∣∣Pr[A(D1, T1) = 1]− Pr[A(D1, T2) = 1]
∣∣

We say that Assumption 1 holds if for all PPT A, AdvA
1 (λ) is a negligible function of λ.

Assumption 2. Given D2 = (N,G,GT , ê, g1, g3, gx1g
y
2 , g

y′

2 gz
′

3) where x, y, y′, z′
R←− ZN , no

PPT adversary has a non-negligible advantage in distinguishing

T1 = ga1g
c
3 from T2 = ga1g

b
2g

c
3

where a, b, c
R←− ZN .

The advantage of an algorithm A in breaking Assumption 2 is defined as:

AdvA
2 (λ) =

∣∣Pr[A(D2, T1) = 1]− Pr[A(D2, T2) = 1]
∣∣

We say that Assumption 2 holds if for all PPT A, AdvA
2 (λ) is a negligible function of λ.

Assumption 3. Given D3 = (N,G,GT , ê, g1, g2, g3, gx1g
y
2 , g

x′
1 gy

′

2) where x, y, x′, y′
R←− ZN ,

no PPT adversary has a non-negligible advantage in distinguishing

T1 = ê(g1, g1)
xx′ ∈ GT from T2

R←− GT .

The advantage of an algorithm A in breaking Assumption 3 is defined as:

AdvA
1 (λ) =

∣∣Pr[A(D3, T1) = 1]− Pr[A(D3, T2) = 1]
∣∣

We say that Assumption 3 holds if for all PPT A, AdvA
3 (λ) is a negligible function of λ.

4

3 Generalized Identity-Based Encryption

3.1 Identity-Based Encryption

An identity-based encryption system is a public-key cryptosystem which allows users to
encrypt messages knowing only the recipient’s identity and some public parameters. It
consists of four PPT algorithms.

Setup(1λ) → (PP,MK) The setup algorithm takes an integer security parameter λ as
input and outputs the public parameters PP and the original master key MK. In the rest
of this report, all algorithms will take implicitly the security parameter and the public
parameters as inputs.

KeyGen(MK′, X) → K The key generation algorithm takes in a master key MK′ and
either X = I, and identity, or X = ε, the empty string. In the former case, it outputs a
secret key K = SK, for the identity I. In the latter case, it outputs another master key,
K = MK′′, such that |MK′| = |MK′′|. This new master key can now be used instead of the
original key in calls of KeyGen.

Encrypt(M, I) → CT The encryption algorithm takes in a message M and an identity
I. It outputs a ciphertext CT.

Decrypt(CT, SK) → M The decryption algorithm takes in a ciphertext CT for message
M and a secret key SK. It outputs the message M .

The correctness requirement is that if the identity I used during the encryption of M
is the same as the identity of the secret key used during decryption, then the output of
Decrypt is the message M . That is, for all PP generated by a call to Setup, for all master
keys MK′ generated by applying the KeyGen algorithm and for all M, I,

Decrypt(Encrypt(M, I),KeyGen(MK′, I)) = M.

3.2 Hierarchical Identity-Based Encryption

In an HIBE system, identities form a structured hierarchy: a user can delegate keys to its
subordinate identities, and thus decrypt any message encrypted to them.

We handle identity vectors I = (I1, . . . , Ij), and define the children of I as all vectors
I||Ix, where || denotes concatenation and Ix is an identity. A user that has a secret key for
vector I can create secret keys for all users that have identity vectors prefixed by I. An
example of hierarchy can be seen in Figure 1.

5

..(1).

(1,1)

.

(1,2)

.

(1,2,1)

.

(1,2,2)

.

(1,2,3)

Figure 1: Vector identities in a hierarchy.

The depth D of the tree is the maximum length of the identity vectors and is called
the depth of the hierarchy. The master key is formulated as a secret key for level 0, thus
the corresponding identity vector is the empty vector.

Setup(1λ) → (PP,MK)
KeyGen(MK′, I) → K
Encrypt(M, I) → CT

 have the same description than in the IBE scheme.

Delegate(I, SKI , Ix) → SKI||Ix The delegation algorithm allows a user that has a secret
key for identity vector I to construct secret keys down the hierarchy. The algorithm takes
in an identity vector I, a secret key for that identity vector and an identity Ix. It outputs
a secret key for the identity vector I||Ix.

Decrypt(CT, SK) → M The decryption algorithm takes in a ciphertext CT for message
M and for identity vector Ic, and a secret key SK for identity vector Ik. If Ik is a prefix
of Ic, it outputs the message M .

3.3 Spatial Encryption

In a spatial encryption scheme, the secret keys are associated to affine subspaces of Zn
N ,

and the delegation relation is defined by subspace inclusion.
Spatial encryption is a generalization of HIBE. Indeed, if we fix n = D and consider

an identity vector I = (I1, . . . , Ij), we can associate it in a bijective manner to the affine
space {(I1, . . . , Ij , xj+1, . . . , xn)|xj+1, . . . , xn ∈ ZN}. The delegation relation is respected.

Setup(1λ) → (PP,MK)
KeyGen(SKE ,W) → K
Encrypt(m,u) → CT

 have the same description than in the IBE scheme.

Delegate(W1, SKW1 ,W2) → SKW2 The algorithm takes in an affine space W1, a secret
key for that space, and a subspace W2 included in W1. It outputs a secret key for W2.

6

Decrypt(CT,u,W,SKW) → m The decryption algorithm takes in a ciphertext CT for
message m and for vector u, and a secret key SK for space W . If W contains u, it first
delegates SKW to obtain SKu. Then it outputs the message m.

4 Our New Leakage-Resilient Spatial Encryption Scheme

We now present our construction of a leakage-resilient spatial encryption scheme with
constant-size ciphertext, which can be seen as an extension of the leakage-resilient HIBE
scheme in [LRW11]. The security proof of this system is available in Appendix A.

4.1 A Few Useful Notations

For a vector v = (v1, . . . , vn)
! ∈ Zn

N of field elements, we use gv to denote the vector of
group elements

gv = (gv1 , . . . , gvn)! ∈ Gn

To simplify the notation, we introduce an operator

ψ : Gn × Zn
N → G

(gv, w) $→ g〈v,w〉

and its extension:

ψ∗ : Gn × Zn×d
N → Gd

(
gv,

(
C1, . . . ,Cd

))
$→ (ψ(gv,C1), . . . ,ψ(gv,Cd))

!

We can notice that ψ is easily computable.

4.2 Construction

The system parameters for our spatial encryption system will be primes p1, p2, p3 (where
each log pi is approximately the security parameter λ) and two groups G and GT of order
N = p1p2p3, with a bilinear pairing ê : G×G → GT . Additionally, the public parameters
will include group elements g1 ∈ Gp1 , g3 ∈ Gp3 , g

ϕ
1 ∈ G, t ∈ GT and a vector gα1 ∈ Gn.

A secret key for an affine space W = Aff(M,u) of dimension d will have the form

(kρ, kr, ku,kdel) =
(
gρ1 , g

r
1, g

τ+r(ϕ+〈u,α〉)−〈ρ,σ〉
1 , grM

!α
1

)
× gµ3 ∈ Gd+n+2.

7

Setup(λ) generates the system parameters N = p1p2p3,G,GT . It then chooses parameters

g1
R←− Gp1 g3

R←− Gp3 ϕ
R←− ZN α,ρ,σ

R←− Zn
N µ

R←− Z2n+2
N

and secret parameter τ
R←− G, then computes t = ê(g1, g1)τ . It outputs public parameters

PP = (N, g1, g3, g
ϕ
1 , g

α
1 , t, g

σ
1)

and secret key

SKE =
(
gρ1 , g

r
1, g

τ+rϕ−〈ρ,σ〉
1 , grα1

)
× gµ3 .

Delegate(W1, SKW1 ,W2) takes two subspaces W1 = Aff(M1,u1) and W2 = Aff(M2,u2)
and a key SKW1 under the form (kρ, kr, ku1 ,kdel). Let µ be the Gp3 part of SKW1 . We
similarly divide µ into (µρ, µr, µu1 ,µdel). Since W2 is a subspace of W1, we must have
M2 = M1T and u2 = u1 +M1v for some matrix T and vector v. We can then compute a
key for W2:

ŜKW2 = (kρ, kr, ku1 · ψ(kdel, v)︸ ︷︷ ︸
ku2

,ψ∗(kdel, T)︸ ︷︷ ︸
k′
del

)

=
(
gρ1 , g

r
1, g

τ+r(ϕ+〈u1,α〉)−〈ρ,σ〉
1 · grv

!M1
!α

1 , grT
!M1

!α
1

)
×

(
g
µρ

3 , gµr
3 , g

µu1+〈v,µdel〉
3 , gT

!µdel
3

)

=
(
gρ1 , g

r
1, g

τ+r(ϕ+〈u1,α〉)−〈ρ,σ〉+r〈M1v,α〉
1 , grM2

!α
1

)
× gµ

′

3

=
(
gρ1 , g

r
1, g

τ+r(ϕ+〈u2,α〉)−〈ρ,σ〉
1 , grM2

!α
1

)
× gµ

′

3

where µ′ = (µρ, µr, µu1 + 〈v,µdel〉 , T%µdel).

Then we pick ∆r
R←− Zp, ∆ρ

R←− Zn
p and ∆µ

R←− Zd+n+2
p to re-randomize it:

SKW2 = ŜKW2 ×
(
g∆ρ
1 , g∆r

1 , g∆r(ϕ+〈u2,α〉)−〈∆ρ,σ〉
1 , g∆rM2

!α
1

)
× g∆µ

3 .

=
(
gρ+∆ρ
1 , gr+∆r

1 , gτ+(r+∆r)(ϕ+〈u2,α〉)−〈ρ+∆ρ,σ〉
1 , g(r+∆r)M2

!α
1

)
× gµ

′+∆µ
3 .

Notice that Delegate(W1, SKW1 ,W1) is a re-randomization of SKW1 .

Encrypt(m,u), where m is encoded as an element of the target group GT , picks a random

s
R←− Zn

N and computes the ciphertext

CT = (CT∗, cm) = (cσ, cu, cs, cm) =
(
gsσ1 , g−s(ϕ+〈u,α〉)

1 , gs1,m · ts
)
∈ Gn+2 ×GT .

8

Decrypt(CT,u,W,SKW) where CT = (cσ, cu, cs, cm) first delegates SKW to obtain the

key SKu = (kρ, kr, ku) =
(
gρ1 , g

r
1, g

τ+r(ϕ+〈u,α〉)−〈ρ,σ〉
1

)
× gµ3 . It then recovers

cm
ê3(CT

∗, SKu)
=

cm
ê(cσ,kρ) · ê(cu, kr) · ê(cs, ku)

=
m · ts

ê(g1, g1)
s〈ρ,σ〉−rs(ϕ+〈u,α〉)+s(τ+r(ϕ+〈u,α〉)−〈ρ,σ〉)

=
m · ê(g1, g1)sτ

ê(g1, g1)sτ
= m.

4.3 Security Definition

The security of our system is based on a game, called MasterLeakSpatial. In this game, the
challenger first makes a call to Setup, to get a secret key for the whole space, and public
parameters that it can give to the adversary. In a first phase, the adversary can make a
polynomial number of queries, in any order:

• Create queries to store keys in an array;

• Leak queries to apply a leak function of his choice on any key (as long as the total
number of leaked bits for a certain key does not exceed !SK);

• or Reveal queries to recover a whole key (as long as it is not a key associated to the
entire space, obviously).

At the end of this first phase, the adversary chooses a challenge vector u∗ such that
none of the revealed spaces (associated to its revealed keys) contain it, as well as two
messagesm0,m1. It gives them to the challenger, which chooses a random bit β and returns
CT∗ = Encrypt(mβ ,u∗). From then on, the second phase starts, and the adversary can
make Create and Reveal queries on keys whose space does not contain u∗, naturally. It
finally has to suggest a value for β. If it guesses right, it wins.

The scheme is considered leakage resilient if no PPT adversary can win the Master-
LeakSpatial game with probability significantly better than 1/2. Indeed, roles are symmet-
ric with respect to 1/2: if the adversary always loses the game, it is as concerning as if it
had always won.

In order to formally define the MasterLeakSpatial security game, let us first introduce
the following parameters:

• the set R ∈ P(E) of spaces for which a key has been revealed;

• the array T ⊂ E × SK × N that holds tuples of the form (space, key, leaked). An
example is shown in Figure 2.

9

..
E
.

SKE
.

0
.

0
.

W
.

SKW
.

1
.

1
.

W ′

.
SKW ′

.
2

.
0

.
E

.
SK′

E
.

3
.

5

Figure 2: Example of T array being filled in the MasterLeakSpatial game. Each cell contains
the triplet (space, key, leaked).

The formal definition of the game MasterLeakSpatial, which is described in Figure 3,
consists of the following phases:

Setup. The challenger makes a call to Setup(1λ) and gets a key SK for the whole space
E and the public parameters PP. It gives PP to the adversary.

Phase 1. In this phase, the adversary can make any of the following queries to the
challenger, in any possible way: Create, Leak, Reveal, Delegate. These algorithms are
listed in Figure 3.

Challenge. The adversary chooses a challenge vector u∗ such that no element of R
contains it, as well as two messages m0,m1 of equal size. It makes a call to LR(u∗,m0,m1)
and obtains a ciphertext CT∗.

Phase 2. This is the same as Phase 1, except the only allowed queries are Create and
Reveal for secret keys whose space does not contain u∗.

Guess. The adversary chooses a bit β′ and calls Finalize(β′). If the output is True, it
succeeds.

10

Game MasterLeakSpatial

procedure Initialize

(PP, SK)
R←− Setup

R ← ∅
T [0] ← (E, SK, 0)
nbKeys ← 1

β
R←− {0, 1}

Return PP

procedure Create(h,W)

If T [h].space = E then

SKW
R←− KeyGen(T [h].key,W)

T [nbKeys] ← (W, SKW , 0)
nbKeys ← nbKeys+ 1
Return SKW

Else
Return ⊥

procedure Delegate(h,W ′)

SKW ′ ← Delegate(T [h].space, T [h].key,W ′)
T [nbKeys] ← (W ′, SKW ′ , 0)
nbKeys ← nbKeys+ 1
Return SKW ′

procedure Leak(h, f)

SK ← T [h].key
If T [h].leaked+ |f(SK)| ≤ "SK then

T [h].leaked ← T [h].leaked+ |f(SK)|
Return f(SK)

Else
Return ⊥

procedure Reveal(h)

If T [h].space &= E then
R ← R ∪ T [h].space
Return T [h].key

Else
Return ⊥

procedure LR(u∗,m0,m1)

CT∗ R←− Encrypt(u∗,mβ)
Return CT∗

procedure Finalize(β′)

Return (β′ = β)

Figure 3: Algorithms of the game MasterLeakSpatial.

The security definition we will use is the following:

Definition 1. A spatial encryption system Π is "SK-master-leakage secure if for all PPT
adversaries A it is true that

AdvMasterLeakSpatial
A,Π (λ, "SK) ≤ negl(λ)

where AdvMasterLeakSpatial
A,Π (λ, "SK) is the advantage of A in game MasterLeakSpatial with se-

curity parameter λ and leakage parameter "SK = "SK(λ) and is formally defined as:

AdvMasterLeakSpatial
A,Π (λ, "SK) =

∣∣∣∣Pr[A succeeds]− 1

2

∣∣∣∣ ,

where the probability is over all random bits used by the challenger and the attacker.

11

4.4 Proof Overview

4.4.1 Dual System Encryption

The Dual System Encryption, first developed by Waters in [Wat09], is a methodology for
proving security of encryption systems.

Both ciphertexts and secret keys will take on one of two indistinguishable forms: nor-
mal, or semi-functional. A semi-functional key cannot decrypt a semi-functional ciphertext.
All other combinations work, as shown in Table 1.

This technique consists in gradually modifying the secret keys and ciphertexts of the
system to make them semi-functional. When both secret keys and ciphertexts are semi-
functional, proving security is straightforward.

Table 1: Different combinations of secret keys and ciphertexts.
secret key ciphertext decryption
normal normal correct (obviously)
normal semi-functional correct
semi-functional normal correct
semi-functional semi-functional incorrect

4.4.2 Hybrid Games

In order to prove that the advantage of the adversary in the MasterLeakSpatial game is
negligible, we will define a sequence of games that are closely related to each other2.
We will prove that the difference in probability of winning for the adversary is negligible
between two consecutive games of this sequence, until we get to a game where both keys and
ciphertexts will be semi-functional, so the adversary will not have any chance of winning
the game.

First, we defineMasterLeakSpatial*, which is the same game asMasterLeakSpatial except
that all Delegate(h,W ′) calls have been replaced by Create(0,W ′) calls. As the keys are
identically distributed, the advantage of the adversary in MasterLeakSpatial is negligibly
close to its advantage in MasterLeakSpatial*.

Then we define MasterLeakC, similar to MasterLeakSpatial* except that the challenge
ciphertext is now semi-functional. Using Assumption 1, we will show that the advantages
of the adversary in those games are negligibly close.

In MasterLeakCK, the semi-functional versions of the secret keys are stored in T as
well: it contains quadruplets of the form (space, key, keySF, leaked). The Create calls
use the normal versions of the keys while the Leak and Reveal queries apply to the

2The complete description of the algorithms of these games is available in Figures 5 and 6.

12

semi-functional versions. We will need Assumption 3 to prove that the advantage of the
adversary is negligible in this game.

Finally, in the MasterLeakCKj game, for the j − 1 first keys the attacker creates, it
will have access to the semi-functional versions of them via Leak or Reveal queries. For
the other keys, it will have access to the normal versions (see also Figure 4). Notice that
MasterLeakCK0 is exactly MasterLeakC while MasterLeakCKnbKeys is exactly MasterLeakCK.
We will show that if Assumption 2 holds, the difference of probability of winning for the
adversary in MasterLeakCKj versus MasterLeakCKj+1 is negligible, which will conclude the
proof.

..
W0
.

SKW0

. S̃KW0.
j − 2

.
4

.
W1

.

SKW1

. S̃KW1.
j − 1

.
6

.
W2

.

SKW2

. S̃KW2.
j

.
2

.
W3

.

SKW3

. S̃KW3.
j + 1

.
3

Figure 4: Example of T array being filled in the MasterLeakCKj game. Each cell con-
tains the quadruplet (space, key, keySF, leaked). The adversary has access to the semi-
functional versions of the j − 1 first keys, and to the normal versions of the other keys.

5 Concluding Remarks

We have designed the first leakage-resilient spatial encryption scheme, which is an impor-
tant instance of generalized identity-based encryption. Though reasonably efficient, our
scheme does not tolerate leakage during key updates. To address this problem and obtain
a scheme with stronger security guarantees, a promising direction would be to adapt the
result of [LLW11] to the spatial encryption scenario.

13

Game MasterLeakC
procedure Initialize

(PP, SK)
R←− Setup

R ← ∅
T [0] ← (E, SK, 0)
nbKeys ← 1

β
R←− {0, 1}

Return PP

procedure Create(h,W)

If T [h].space = E then

SKW
R←− KeyGen(T [h].key,W)

T [nbKeys] ← (W, SKW , 0)
nbKeys ← nbKeys+ 1
Return SKW

Else
Return ⊥

procedure Delegate(h,W ′)

Return Create(0,W ′)

procedure Leak(h, f)

SK ← T [h].key
If T [h].leaked+ |f(SK)| ≤ "SK then

T [h].leaked ← T [h].leaked+ |f(SK)|
Return f(SK)

Else
Return ⊥

procedure Reveal(h)

If T [h].space &= E then
R ← R ∪ T [h].space
Return T [h].key

Else
Return ⊥

procedure LR(u∗,m0,m1)

CT∗ R←− EncryptSF (u∗,mβ)

Return CT∗

procedure Finalize(β′)

Return (β′ = β)

Game MasterLeakCK
procedure Initialize

(PP, SK)
R←− Setup

S̃K ← KeyGenSF(SK, E)

R ← ∅
T [0] ← (E, SK, S̃K , 0)
nbKeys ← 1

β
R←− {0, 1}

Return PP

procedure Create(h,W)

If T [h].space = E then

SKW
R←− KeyGen(T [h].key,W)

S̃KW
R←− KeyGenSF(T [h].key,W)

T [nbKeys] ← (W, SKW , S̃KW , 0)

nbKeys ← nbKeys+ 1

Return S̃KW

Else
Return ⊥

procedure Delegate(h,W ′)

Return Create(0,W ′)

procedure Leak(h, f)

S̃K ← T [h].keySF

If T [h].leaked+ |f(S̃K)| ≤ "SK then

T [h].leaked ← T [h].leaked+ |f(S̃K)|
Return f(S̃K)

Else
Return ⊥

procedure Reveal(h)

If T [h].space &= E then
R ← R ∪ T [h].space

Return T [h].keySF

Else
Return ⊥

procedure LR(u∗,m0,m1)

CT∗ R←− EncryptSF(u∗,mβ)
Return CT∗

procedure Finalize(β′)

Return (β′ = β)

Figure 5: Algorithms of the games MasterLeakC and MasterLeakCK.

Game MasterLeakCKj

procedure Initialize

(PP, SK)
R←− Setup

S̃K ← KeyGenSF(SK, E)
R ← ∅
T [0] ← (E, SK, S̃K, 0)
nbKeys ← 1

β
R←− {0, 1}

Return PP

procedure Create(h,W)

If T [h].space = E then

SKW
R←− KeyGen(T [h].key,W)

S̃KW
R←− KeyGenSF(T [h].key,W)

T [nbKeys] ← (W, SKW , S̃KW , 0)
nbKeys ← nbKeys+ 1
Return SKW

Else
Return ⊥

procedure Delegate(h,W ′)

Return Create(0,W ′)

procedure Leak(h, f)

SK ← nbKeys > j ? T [h].key : T [h].keySF

If T [h].leaked+ |f(SK)| ≤ "SK then
T [h].leaked ← T [h].leaked+ |f(SK)|
Return f(SK)

Else
Return ⊥

procedure Reveal(h)

If T [h].space &= E then
R ← R ∪ T [h].space

Return nbKeys > j ? T [h].key : T [h].keySF

Else
Return ⊥

procedure LR(u∗,m0,m1)

CT∗ R←− EncryptSF(PP,u∗,mβ)
Return CT∗

procedure Finalize(β′)

Return (β′ = β)

Figure 6: Algorithms of the game MasterLeakCKj .

15

References

[AGV09] Adi Akavia, Shafi Goldwasser, and Vinod Vaikuntanathan. Simultaneous
hardcore bits and cryptography against memory attacks. In Omer Reingold,
editor, TCC 2009, volume 5444 of LNCS, pages 474–495. Springer, Berlin,
Germany, March 15–17, 2009.

[BFO08] Alexandra Boldyreva, Serge Fehr, and Adam O’Neill. On notions of security
for deterministic encryption, and efficient constructions without random ora-
cles. In David Wagner, editor, CRYPTO 2008, volume 5157 of LNCS, pages
335–359, Santa Barbara, CA, USA, August 17–21, 2008. Springer, Berlin,
Germany.

[BGN05] Dan Boneh, Eu-Jin Goh, and Kobbi Nissim. Evaluating 2-DNF formulas on
ciphertexts. In Joe Kilian, editor, TCC 2005, volume 3378 of LNCS, pages
325–341, Cambridge, MA, USA, February 10–12, 2005. Springer, Berlin, Ger-
many.

[BGW05] Dan Boneh, Craig Gentry, and Brent Waters. Collusion resistant broadcast
encryption with short ciphertexts and private keys. In Victor Shoup, editor,
CRYPTO 2005, volume 3621 of LNCS, pages 258–275, Santa Barbara, CA,
USA, August 14–18, 2005. Springer, Berlin, Germany.

[BH08] Dan Boneh and Michael Hamburg. Generalized identity based and broadcast
encryption schemes. In Josef Pieprzyk, editor, ASIACRYPT 2008, volume
5350 of LNCS, pages 455–470, Melbourne, Australia, December 7–11, 2008.
Springer, Berlin, Germany.

[BKKV10] Zvika Brakerski, Yael Tauman Kalai, Jonathan Katz, and Vinod Vaikun-
tanathan. Overcoming the hole in the bucket: Public-key cryptography re-
silient to continual memory leakage. In 51st FOCS, pages 501–510. IEEE
Computer Society Press, 2010.

[Bon07] Dan Boneh. Bilinear groups of composite order (invited talk). In Tsuyoshi
Takagi, Tatsuaki Okamoto, Eiji Okamoto, and Takeshi Okamoto, editors,
PAIRING 2007, volume 4575 of LNCS, page 1, Tokyo, Japan, July 2–4,
2007. Springer, Berlin, Germany.

[BSW11] Elette Boyle, Gil Segev, and Daniel Wichs. Fully leakage-resilient signatures.
In Kenneth G. Paterson, editor, EUROCRYPT 2011, volume 6632 of LNCS,
pages 89–108, Tallinn, Estonia, May 15–19, 2011. Springer, Berlin, Germany.

[BWY11] Mihir Bellare, Brent Waters, and Scott Yilek. Identity-based encryption se-
cure against selective opening attack. In Yuval Ishai, editor, TCC 2011,

16

volume 6597 of LNCS, pages 235–252, Providence, RI, USA, March 28–30,
2011. Springer, Berlin, Germany.

[DHLAW10] Yevgeniy Dodis, Kristiyan Haralambiev, Adriana López-Alt, and Daniel
Wichs. Cryptography against continuous memory attacks. In 51st FOCS,
pages 511–520. IEEE Computer Society Press, 2010.

[LLW11] Allison B. Lewko, Mark Lewko, and Brent Waters. How to leak on key
updates. In 43rd ACM STOC, pages 725–734. ACM Press, 2011.

[LOS+10] Allison B. Lewko, Tatsuaki Okamoto, Amit Sahai, Katsuyuki Takashima, and
Brent Waters. Fully secure functional encryption: Attribute-based encryp-
tion and (hierarchical) inner product encryption. In Henri Gilbert, editor,
EUROCRYPT 2010, volume 6110 of LNCS, pages 62–91, French Riviera,
May 30 – June 3, 2010. Springer, Berlin, Germany.

[LRW11] Allison B. Lewko, Yannis Rouselakis, and Brent Waters. Achieving leakage
resilience through dual system encryption. In Yuval Ishai, editor, TCC 2011,
volume 6597 of LNCS, pages 70–88, Providence, RI, USA, March 28–30, 2011.
Springer, Berlin, Germany.

[LW10] Allison B. Lewko and Brent Waters. New techniques for dual system encryp-
tion and fully secure HIBE with short ciphertexts. In Daniele Micciancio,
editor, TCC 2010, volume 5978 of LNCS, pages 455–479, Zurich, Switzer-
land, February 9–11, 2010. Springer, Berlin, Germany.

[MD11] Daisuke Moriyama and Hiroshi Doi. A fully secure spatial encryption scheme.
IEICE Transactions, 94-A(1):28–35, 2011.

[Wat09] Brent Waters. Dual system encryption: Realizing fully secure IBE and HIBE
under simple assumptions. In Shai Halevi, editor, CRYPTO 2009, volume
5677 of LNCS, pages 619–636, Santa Barbara, CA, USA, August 16–20, 2009.
Springer, Berlin, Germany.

17

A Security Proof

A.1 Semi-functionality

A semi-functional key has Gp2 parts, while a normal key has not. We pick at random g2,
a generator of Gp2 .

KeyGenSF(SK,W) first calls Delegate(E, SK,W) so as to get a normal key SKW =

(kρ, kr, ku,kdel). It then picks γ
R←− Zn+2

N , θ
R←− Zd

N and computes

S̃KW =
(
(kρ, kr, ku)× gγ2 ,kdel × gθ2

)

EncryptSF(u,m) first calls Encrypt(u,m) to get CT = (cσ, cu, cs, cm). It then picks

δ
R←− Zn+2

N and computes the ciphertext

C̃T =
(
(cσ, cu, cs)× gδ2 , cm

)
.

γ,θ, δ are called the semi-functional parameters of the secret key, the delegation key
and the ciphertext, respectively. If someone uses a semi-functional key S̃K for space W =
Aff(M,u1) with parameters (γ,θ) to construct a secret key for vector u2 = u1+Mv with
KeyGen, then this will be semi-functional with parameters γ′ = γ + (0, . . . , 0, 〈v,θ〉).

A semi-functional secret key for vector u is called nominal with respect to a ciphertext
for vector u′ if it can correctly decrypt it, thus if and only if:

〈γ, δ〉 = 0 mod p2 and u = u′

because we get an extra term ê(g2, g2)〈γ,δ〉 by the pairing. If the secret key cannot decrypt
it, it is called truly semi-functional.

A.2 Lemma for Leakage Analysis

Our analysis of the leakage resilience of our system will rely on the following lemma
from [BKKV10, LRW11], which is proven in [BFO08]. Below, we let dist(X1, X2) denote
the statistical distance of two random variables X1 and X2.

Lemma 1. Let m, l, d ∈ N, m ≥ l ≥ 2d and let p be a prime. Let X
R←− Zm×!

p , let

Y
R←− Zm×d

p , and let T
R←− Rkd(Z!×d

p), where Rkd(Z!×d
p) denotes the set of ! × d matrices

of tank d with entries in Zp. Let f : Zm×d
p → W be some function. Then,

dist((X, f(X · T)), (X, f(Y))) ≤ ε

as long as

|W | ≤ 4 ·
(
1− 1

p

)
· p!−(2d−1) · ε2.

18

More precisely, we will use the following corollary.

Corollary 1. Let m ∈ N,m ≥ 3, and let p be a prime. Let ∆
R←− Zm

p , ν
R←− Zm

p and let
ν′ be chosen uniformly randomly from the set of vectors in Zm

p which are orthogonal to ∆
under the dot product modulo p. Let f : Zm

p → W be some function. Then,

dist
(
(∆, f(ν)), (∆, f(ν′))

)
≤ ε

as long as

|W | ≤ 4 ·
(
1− 1

p

)
· pm−2 · ε2.

Proof. We apply Lemma 1 with d = 1 and " = m− 1. Y then corresponds to ν, while X
corresponds to a basis of the orthogonal space of ∆. We note that ν′ is then distributed as

X · T , where T
R←− Rk1(Zm−1×1

p). We note that X is determined by ∆, and is distributed

as X
R←− Zm×m−1

p , since ∆ is chosen uniformly randomly from Zm
p . It follows that

dist
(
(∆, f(ν)), (∆, f(ν′))

)
= dist((X, f(X · T)), (X, f(Y))) ≤ ε.

This corollary allows us to set "SK = (n − 1 − 2c) log p2 for our construction (we will
have n+ 1 = m), where c is any fixed positive constant (so that ε = p−c

2 is negligible).

A.3 Proof

We will prove the following theorem.

Theorem 1. Under assumptions 1, 2, 3 and for "SK = (n− 1− 2c) log p2, where c > 0 is
any fixed positive constant, our spatial encryption scheme is "SK-master-leakage secure.

Table 2: Assumptions that will be used for the proofs.
game game assumption
MasterLeakSpatial MasterLeakSpatial* trivial
MasterLeakSpatial* MasterLeakC 2.1
MasterLeakCKj MasterLeakCKj+1 2.2
MasterLeakCK 2.3

Theorem 2. Any polynomial-time attacker A has only a negligibly different probability of
winning in MasterLeakSpatial versus MasterLeakSpatial*.

Proof. It is easy to verify that the output of Delegate(W1, SKW1 ,W2) is identically dis-
tributed to the output of KeyGen(SKE ,W2).

19

Theorem 3. If assumption 2.1 holds, any polynomial-time attacker A has only a negligibly
different probability of winning in MasterLeakSpatial* versus MasterLeakC.

Proof. We suppose there exists a PPT attacker A which attains a non-negligible difference
in probability of winning between those two games. We will build a PPT algorithm B that
breaks assumption 2.1 with non-negligible advantage.

B receives D1 = (N,G,GT , ê, g1, g3) and a challenge term T ∈ Gp1p?2
. Then it plays the

MasterLeakSpatial* or the MasterLeakC game with A in the following way.

Setup. B picks (τ,σ,α,ϕ)
R←− ZN × Zn

N × Zn
N × ZN then gives

PP = (N, g1, g3, g
ϕ
1 , g

α
1 , ê(g1, g1)

τ , gσ1)

to A, where N , g1 and g3 are given by the challenger.

Phase 1. Knowing α, the simulator can generate a secret key for the whole space E and
use it to execute all secret queries (Create, Leak, KeyGen).

Challenge. The adversary A gives B two messages m0 and m1 and a challenge vector

u∗. The simulator B chooses β
R←− {0, 1} and outputs the ciphertext

CT = (cσ, cu∗ , cs, cm) = (Tσ, T−(ϕ+〈u∗,α〉), T,mβ · ê(T, gτ1)).

Phase 2. B works the same way as in Phase 1.

If T = ga1g
b
2, then the ciphertext is semi-functional. This implicitly sets

s = a and δ = b(σ,−ϕ− 〈u∗,α〉 , 1).

s is properly distributed since a
R←− ZN according to the assumption. δ is properly dis-

tributed in the attacker’s view because the factors σ,−ϕ − 〈u∗,α〉 are only seen modulo
p1 in the public parameters and not modulo p2. Thus they are random modulo p2 in A’s
view. Therefore, B has properly simulated the MasterLeakC game.

If T = ga1 , the ciphertext is normal since it has no Gp2 parts. In this case, B has
properly simulated the MasterLeakSpatial* game.

Theorem 4. If assumption 2.2 holds, any polynomial-time attacker A has only a negligibly
different probability of winning in MasterLeakCKj versus MasterLeakCKj+1.

Proof. B receives D2 = (N,G,GT , ê, g1, g3, gx1g
y
2 , g

y′

2 , gz
′

3) and a challenge term T ∈ Gp1p?2p3
.

Then it plays the MasterLeakCKj or the MasterLeakCKj+1 game with A as follows.

20

Setup. B picks (τ,σ,α,ϕ)
R←− ZN × Zn

N × Zn
N × ZN then gives

PP = (N, g1, g3, g
ϕ
1 , g

α
1 , ê(g1, g1)

τ , gσ1)

to A, where N , g1 and g3 are given by the challenger.

Phase 1.

• For the first j − 1 keys, B picks (ρ′, r,µ)
R←− Zn

N × ZN × Zd+n+2
N and, for the semi-

functional parameters, (γ′,θ′)
R←− Zn+2

N × Zd
N . It then computes:

SK =
((

gρ
′

1 , gr1, g
τ+r(ϕ+〈u,α〉)−〈ρ′,σ〉
1

)
× (gy

′

2 gz
′

3)γ
′
, grM

"α
1 × (gy

′

2 gz
′

3)θ
′
)
× gµ3

The Gp1 and Gp3 parthosos are properly distributed and the semi-functional param-
eters are γ = y′γ′ and θ = y′θ′. These are properly distributed as well.

• For the j key, B will use the challenge term to generate the secret key. It picks

(ρ′,µ)
R←− Zn

N × Zd+n+2
N and outputs

SK =
(
Tρ′

, T, gτ1T
ϕ+〈u,α〉−〈ρ′,σ〉, TM"α

)
× gµ3

If T = ga1g
b
2g

c
3, then this key is semi-functional with

r′ = a ρ = aρ′ γ = b
(
ρ′, 1,ϕ+ 〈u,α〉 −

〈
ρ′,σ

〉)
θ = bM%α.

Again, since the public parameters only determine ϕ and α modulo p1, the semi-
functional parameters are random modulo p2 in A’s view.

• From the j + 1 key, B picks (ρ′, r,µ)
R←− Zn

N × ZN × Zd+n+2
N and computes:

SK =
(
gρ

′

1 , gr1, g
τ+r(ϕ+〈u,α〉)−〈ρ′,σ〉
1 , grM

"α
1

)
× gµ3

Challenge. In this phase, B has to create a semi-functional ciphertext with EncryptSF.

A gives B two messages m0 and m1 and a challenge vector u∗. B chooses β
R←− {0, 1} and

outputs the ciphertext

C̃T = (cσ, cu∗ , cs, cm) =
(
(gx1g

y
2)

σ, (gx1g
y
2)

−(ϕ+〈u∗,α〉), (gx1g
y
2),mβ · ê((gx1g

y
2), g

τ
1)
)
.

21

Phase 2. B works the same way as in Phase 1.

The ciphertext parameters are:

s = x and δ = y(σ,−ϕ− 〈u∗,α〉 , 1).

s is properly distributed, but the semi-functional parameters are not: if the space of
the j key contains the challenge vector u∗, the secret key is nominal with respect to the
ciphertext. Indeed:

(γ + (0, . . . , 0, 〈v,θ〉)) · δ

= b
(
ρ′, 1,ϕ+ 〈u,α〉 −

〈
ρ′,σ

〉
+

〈
v,M!α

〉)
· y(σ,−ϕ− 〈u∗,α〉 , 1)

= by
(〈
ρ′,σ

〉
− ϕ− 〈u∗,α〉+ ϕ+ 〈u,α〉 −

〈
ρ′,σ

〉
+ 〈Mv,α〉

)

= by 〈u+Mv − u∗,α〉
= 0 (mod p2)

Notice that if the space of the j key contains a vector w which is equal to u∗ modulo
p2, we obtain the same result. With the help of two lemmas, we will show that the change
in the adversary’s advantage is negligible.

Lemma 2. If assumption 2 holds, then for any PPT adversary A, A’s advantage in the
MasterLeakCj game, or in the MasterLeakCj+1 game, changes only by a negligible amount
if we restrict it to make queries only on the challenge vector and on spaces such that no
component of any vector of them is equal to a respective component from the challenge
vector u∗ modulo p2.

Proof. If there exists an adversary whose advantage changes by a non-negligible amount
under this restriction, we can find a non-trivial factor of N with non-negligible probability.
So we can break Assumption 2, using the same proof as [LW10]).

The simulator playsMasterLeakCj orMasterLeakCj+1, using the terms from Assumption
2 to create the semi-functional keys and ciphertext. It worlds in a way similar to the
simulator in the reduction shown in Theorem 3.

Lemma 3. We suppose the leakage is at most "SK = (n− 1− 2c) log p2, where c > 0 is a
positive constant. Then, for any PPT adversary A, A’s advantage in the MasterLeakCj+1

game changes only by a negligible amount when the truly semi-functional j key is replaced
by a nominal semi-functional key whenever A declares the j key to be associated to a space
that contains the challenge ciphertext vector.

Proof. Let us suppose there exists a PPT algorithm A whose advantage changes by a non-
negligible amount when the MasterLeakCj+1 game changes as described above. Using A,
we will create a PPT algorithm B which will distinguish between (∆, f(ν)) and (∆, f(ν′))

22

from Corollary 1 with non-negligible advantage (when m = n + 1 and p = p2). This will
yield a contradiction, since these distributions have a negligible statistical distance.

B simulates MasterLeakCj+1 as follows. It runs Setup and gives A the public param-
eters. Since B knows α and generators of all the subgroups, it can respond to A’s queries
in Phase 1.

With non-negligible probability, the j key A chooses in Phase 1 must be associated to
a space that contains u∗. (If it only did this with negligible probability, then the difference
in advantages whenever it happens would be negligible.)

B will not create that key but instead will encode the leakage A asks for, as a single
polynomial-time computable function f with domain Zn+1

p2 and with an image of size 2!SK .
B receives a sample (∆, f(Γ)), where Γ is either distributed as ν or as ν′. B will use f(Γ)
to answer all of A’s leakage queries on the j key by implicitly defining this key as follows.

B chooses (r1, r2,θ) ∈ Zd+2
p2 . We let g2 denote a generator of Gp2 . B implicitly sets the

Gp2 components of the key to be gΓ
′

2 , where Γ′ is defined to be:

Γ′ = (Γ1, . . . ,Γn,Γn+1 + r1, r2,θ).

B defines the other components of the key to fit their appropriate distribution.
At some point, A declares the challenge vector u∗. If the space of the j key does

not contain u∗, then B aborts the simulation and guesses whether Γ is orthogonal to ∆
randomly. However, the simulation continues with non-negligible probability. Suppose the
space of the j key is W = Aff(M,u) and let v be the vector such that u∗ = u+Mv.

B chooses a random element t2 ∈ Zp2 such that ∆n+1r1 +(r2 + 〈v,θ〉)t2 = 0 (mod p2).
It then constructs the challenge ciphertext, using (∆, t2) ∈ Zn+2

p2 as parameter.
If Γ is orthogonal to ∆, then the j key is nominally semi-functional (and well dis-

tributed):

((Γ1, . . . ,Γn,Γn+1 + r1, r2) + (0, . . . , 0, 〈v,θ〉)) ·∆ = Γ ·∆+∆n+1r1 + (r2 + 〈v,θ〉)t2
= 0 (mod p2).

If Γ is not orthogonal to ∆, then the challenge key is truly semi-functional (and also
well distributed).

It is clear that B can easily handle Phase 2 queries, since the j key cannot be queried
when its space contains u∗. Therefore, B can use the output of A to gain a non-negligible
advantage in distinguishing (∆, f(ν)) and (∆, f(ν′)), which violates Corollary 1.

The above lemmas conclude the theorem.

23

Theorem 5. If assumption 3 holds, any polynomial-time attacker A has only a negligible
advantage in MasterLeakCK.

Proof. We suppose there exists a PPT attacker A which attains a non-negligible advantage
in MasterLeakCK. We will build a PPT algorithm B that breaks assumption 3 with non-
negligible advantage.

B receives D3 = (N,G,GT , ê, g1, g2, g3, gτ1g
y
2 , g

x′
1 gy

′

2) and a challenge term T which is
either ê(g1, g1)τx

′
or a random term of GT . Algorithm B works as follows.

Setup. B picks (σ,α,ϕ)
R←− Zn

N × Zn
N × ZN . Notice that now τ is unknown. The term

ê(g1, g1)τ is computed as ê(gτ1g
y
2 , g1). It gives PP = (N, g1, g3, g

ϕ
1 , g

α
1 , ê(g1, g1)

τ , gσ1) to A,
where N , g1 and g3 are given by the challenger.

Phase 1. For each secret key requested by the adversary, the simulator B picks the

random exponents (r,ρ,µ)
R←− ZN ×Zn

N ×Zd+n+2
N and for the semi-functional parameters,

γ′ R←− Zn+2
N and θ

R←− Zd
N . It uses the secret key

SK =
((

gρ1 , g
r
1, (g

τ
1g

y
2)g

r(ϕ+〈u,α〉)−〈ρ′,σ〉
1

)
× gγ

′

2 , grM
"α

1 × gθ2

)
× gµ3

It is a properly distributed semi-functional key with parameters

γ = γ′ + (0, . . . , 0, y) and θ.

Challenge. The adversary A gives B two messages m0,m1 and a challenge vector u∗.

The simulator chooses β
R←− {0, 1} and outputs the following ciphertext:

CT =

(
(gx

′
1 gy

′

2)
σ
, (gx

′
1 gy

′

2)
−ϕ−〈u∗,α〉

, (gx
′

1 gy
′

2),mβ · T
)
.

Phase 2. B works the same way as in Phase 1.
If T = ê(g1, g1)

τx′
, then we get a semi-functional ciphertext of mβ with parameters

s = x′ and δ = y′(σ,−ϕ− 〈u∗,α〉 , 1).

δ is properly distributed since all terms are random modulo p2. Therefore, B has properly
simulated game MasterLeakCK.

If T
R←− GT , then cm is entirely random and we get a semi-functional ciphertext of

a random message. Hence, the value of β is information-theoretically hidden and the

probability of success of A is exactly 1/2, since β
R←− {0, 1}. Therefore, B can use the

output of A to break Assumption 3 with non-negligible advantage.

This concludes the proof of Theorem 1.

24

